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Abstract:  

The timing of climate adaptation decisions can have substantial consequences for the assessment 

of climate damages, and there is a notable lack of research exploring the timing of, and barriers 

to, climate adaptation. Because many climate adaptation decisions are costly to reverse, and 

because decision makers face climate uncertainty, real options theory suggests that there may be 

incentives to delay adaptive decisions. This paper develops a discrete-choice method to identify 

and empirically estimate the effect of climate uncertainty on the timing of climate adaptation 

decisions of forest landowners in the Eastern United States where landowners have incentives to 

adapt to climate change by planting southern pine species in favor of hardwood forests. A 

fundamental part of our approach is the use of historical variation in daily wintertime low 

temperatures to create a measure of climate uncertainty that is relevant for the adaptive planting 

decision in this study. Our results show that climate uncertainty can significantly slow the rate of 

adaptation and that adaptation paths are highly sensitive to the level of uncertainty. The range of 

projected variation in wintertime low temperatures generates large differences in the projected 

probabilities of converting natural hardwood forests to planted pines of between 24% and 59% in 

regions close to the adaptation threshold. Since natural hardwood forests have more biodiversity 

than pine plantations, our results suggest that an important source of future conservation 

uncertainty arises from the economic response of private forest landowners to climate 

uncertainty in making adaptation decisions. 
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1. Introduction  
 

The continuing pace of climate change presents a significant challenge to many areas of society 

and has spurred numerous attempts to mitigate damages and continually assess how humans may  

adapt to a warming world. Knowing how and when people make decisions to adapt to climate 

change is crucial to both assessing climate damages and designing effective policies. While there 

has been a considerable amount of empirical work done to understand how humans adapt to 

climate change, less work has been done to understand the timing of, and barriers to, climate 

adaptation (Massetti and Mendelsohn 2018). An important barrier that might slow adaptation is 

the presence of uncertain climate outcomes combined with adaptation decisions that are costly to 

reverse. For example, an important margin to adapt to climate change is through altering the use 

and management of land (Guo and Costello 2013),  which is widely regarded as being costly to 

reverse. Converting agricultural lands to forestry (Schatzki 2003), converting undeveloped land 

to housing (Mills 1981), armoring coastal property against erosion (Beasley and Dundas 2021), 

effecting managed retreat from sea-level rise (Hino et al. 2017), and harvesting timber (Plantinga 

1998) have all been acknowledged to be land-use decisions that have elements of irreversibility. 

Since climate affects the economic value of many types of land-use decisions (Mendelsohn et al. 

1994), and since there is uncertainty in both short-term weather events and long-term climate 

outcomes (Burke et al. 2015), real options theory would suggest that the timing of adaptation to 

climate change through land-use decisions will be affected by the magnitude of climate 

uncertainty (Mezey and Conrad 2010). However, there is a notable lack of economics research 

assessing and estimating how the combination of climate uncertainty and irreversibility will 

affect the timing of adaptation decisions made by private individuals with respect to using 

natural resources.  

Understanding the interplay of climate uncertainty and irreversibility has important climate 

policy implications for at least two reasons. First, past research finds that irreversible decisions 

are optimally delayed with larger amounts of uncertainty (Arrow and Fisher 1974), and so 

adaptation decisions subject to greater amounts of climate uncertainty may occur at a slower rate 

than decisions with less uncertainty. Second, it is important for policy design that assessments of 

climate damages account for private adaptation decisions, including the timing of those decisions 

(Auffhammer 2018).  
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The role of climate uncertainty and irreversibility is a particularly salient element of adaptation 

in forestry and the resulting landscape composition for several reasons. First, in the United 

States, approximately 60% of forestland is privately owned, and so any private adaptation to 

climate change that occurs through harvest and planting decisions will greatly impact the 

composition of a large portion of the country’s forests and the many market and non-market 

ecosystem services they provide (Hashida et al. 2020). Second, previous research finds that 

climate change may positively affect the global forestry sector through productivity 

improvements (Sohngen 2020), though a significant portion of the benefits are expected to arise 

through adaptation by altering the types of forests that are planted (Massetti and Mendelsohn 

2018). In a Ricardian analysis of climate impacts on U.S. forestry, Mihiar and Lewis (2021) find 

that positive impacts from climate change are concentrated in the middle latitudes of the eastern 

U.S. and that 69% of the benefits arise from adaptation away from the dominant hardwood 

forests towards pine forests. However, the commercially valuable southern pine species that 

could be planted in the middle latitudes of the eastern U.S. are sensitive to cold temperatures 

(Nedlo et al. 2009; South et al. 2002; Pickens and Crate 2018; Lu et al. 2021), and thus 

uncertainty regarding winter temperatures makes adapting to pines risky in regions where they 

are not yet prevalent. Finally, because harvest and planting decisions are effectively irreversible 

– or not reversible without large costs – we would expect that climate uncertainty may generate 

an incentive to delay adaptation decisions and the resulting changes in the composition of 

landscapes and the ecosystem services they provide. No previous study has explored the effect of 

climate uncertainty on adaptation decisions within forestry. 

The purpose of this paper is to develop an empirical framework for identifying and estimating 

the impact of climate uncertainty on the timing of adaptive decisions through an application to 

the forestry sector in the Eastern United States. Building off the work of Guo and Costello 

(2013) and the natural resource management literature on option values (Mezey and Conrad 

2010), we outline a theoretical framework for identifying the option value associated with 

climate adaptation decisions in forestry, develop a discrete-choice econometric model to be 

estimated with plot-level data, and empirically estimate the effect of climate uncertainty on the 

probability of harvest and planting choices. We use observed plot-level management decisions 

and land characteristics from the U.S. Forest Service’s Forest Inventory and Analysis (FIA) 

Database, downscaled climate data, and a newly developed database of net returns to forestry 
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(Mihiar and Lewis 2021). We also develop a simulation that allows us to isolate the role of 

climate uncertainty on the time-path of adapting by converting eastern U.S. hardwood forests to 

pine plantations in response to climate change. The empirical framework is used to test two 

hypotheses: 1) that climate uncertainty slows adaptation from hardwoods to pine forests, and 2) 

that the effect of uncertainty is dependent on a location’s proximity to the adaptive margin. 

The primary contribution of this manuscript is an empirical analysis of climate uncertainty on the 

time path of land-use change to adapt to climate change. Our empirical example provides the 

first evidence of how climate uncertainty can affect the temporal path of forest landscape change, 

with a key focus on the highly policy-relevant conversion of natural hardwood forests to pine 

plantations in the eastern U.S. Our use of historical weather variation relevant to the adaptive 

tree planting decision is a key part of our approach to creating a measure of climate uncertainty. 

Further, we develop a simple theoretical setup along with a two-period example to highlight the 

intuition for how climate uncertainty can affect adaptation speed.  

Our results show that larger variance in wintertime cold temperatures – our measure of climate 

uncertainty – has a significant negative effect on the probability of planting pines. Using a 

simulation of the time-path of adaptation based on our parameter estimates, we illustrate that 

climate uncertainty slows adaptation and that the magnitude of this effect is larger in areas that 

are closer in proximity to the adaptive margin. Any research focused on modeling climate 

adaptation behavior in a setting that includes uncertainty and an irreversible adaptation choice 

should not overlook these incentives to delay adaptation. Our results suggest that research be 

undertaken to examine if and to what extent this barrier to adaptation exists in other adaptation 

situations.  

2. Literature Review  
This paper builds off of a small but growing literature of climate adaptation in forestry, option 

value literature as it relates to natural resources, and an extensive forestry economics literature. 

An overall theme is that there has been very little work to date that explores the effects of option 

values on climate adaptation decisions, especially in forestry.  

2.1. Climate adaptation in forestry 

There is a small, but growing literature providing empirical evidence of a link between climate 

and forest management decisions. Guo and Costello (2013) provide the analytical foundation for 
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estimating the economic value of adaptation and for later empirical work to study adaptation in 

forestry. An important aspect of their work is distinguishing between adaptation on the intensive 

margin – e.g. rotation length, seed selection, etc. – and on the extensive margin – e.g. changing 

the types of trees that are replanted.  

The empirical work related to climate adaptation in forestry has shown that adaptation incentives 

exist for forest owners in the eastern U.S. and estimates that 69% of the increase in net returns 

from climate change comes from extensive margin adaptation (Mihiar and Lewis 2021). This 

Ricardian analysis assumes that adaptation is costless/frictionless which is generally not the case 

(Auffhammer 2018). Adaptation in forestry can be sluggish for two reasons. The first is that 

rotation lengths span decades, and so trees are planted infrequently on any given plot of land. 

Premature harvest in order to switch to a more profitable species entails a sizable opportunity 

cost of forgoing growth of the current species. The second reason, and the focus of our study, is 

that there may be an option value associated with this adaptation decision since harvesting and 

planting decisions are difficult to reverse (Plantinga 1998), and the landowner may face 

uncertainty with respect to the future climate on their land. So, while Mihiar and Lewis (2021) 

find that climate change will lead to incentives for landowners to adapt through their planting 

decisions, their study does not address the timing and barriers to adaptation, which is a gap our 

paper seeks to fill.  

Hashida and Lewis (2019) apply the framework developed by Guo and Costello (2013) to 

empirically estimate the effects of climate on forest management decisions and simulate forest 

landscape changes under climate change and carbon pricing policies. In an application to the 

Pacific states of the western U.S., they find that a warming climate incentivizes a shift away 

from the most profitable tree in the region (Douglas-Fir). In contrast, Mihiar and Lewis’ (2021) 

analysis suggests the opposite for the eastern U.S.: a warming climate incentivizes an expansion 

of the most profitable forest types: southern pines. Furthermore, given that the eastern U.S. has 

considerably more private forestland than the west coast1, we would expect these adaptive 

behaviors to have more severe consequences for the provision of forest ES in this region. 

Empirical studies estimating how forest owners on the east coast will adapt to climate change are 

imperative to gaining an understanding of the consequences of climate change for the forest 

 
1 81 percent of forestland in the East is privately owned compared to only 30 percent in the West (Butler 2014). 



Page 6 of 51 

 

resource and its ecosystem services. Our paper extends this prior work by explicitly modeling 

and isolating the effect of climate uncertainty on extensive margin adaptation outcomes within 

forestry.  

2.2 Climate impacts on timber markets 

Earlier papers also have used dynamic optimization methods and partial equilibrium frameworks 

to analyze climate change impacts on state, U.S. and global timber markets as well as estimate 

the welfare effects of that adaptation (Sohngen and Mendelsohn 1998; Sohngen et al. 2001;  Lee 

and Lyon 2004; Sohngen and Tian 2016). Global timber market models use numerical methods 

and show that there are positive productivity and supply effects of climate change in the forest 

sector which are heavily influenced by adaptation (Sohngen 2020). Though these papers provide 

valuable insights into adaptive behavior and the mechanisms through which forest landscapes 

and production may be altered under climate change, these numerical models rely heavily on 

assumptions of optimal decision making on the part of the landowners and that landowners have 

perfect information about the future and can therefore anticipate any future climate changes that 

might favor one type of tree over another. Importantly, these numerical models assume no option 

values that might slow adaptation, and thus the benefits to the forestry sector would likely be 

larger than under a framework that explicitly models the role of climate uncertainty and 

irreversible adaptation choices. The advantage of an empirical framework for analyzing 

adaptation decisions in forestry is that we can explicitly test whether climate uncertainty 

influences forest management, and thus we can test the applicability of the numerical literatures’ 

assumption of no option values. A recent review article highlights the need for economic studies 

of climate uncertainty on adaptation in forestry (Sohngen 2020). 

2.3 Option value in natural resource management 

While option values have been studied in many natural resource management cases under 

uncertainty, including forestry, the focus is primarily on harvest and rotation decisions (Mezey 

and Conrad 2010). In an empirical application to land-use change between agriculture and 

forestry, Schatzki (2003) shows that option values arising from uncertain commodity prices 

induce hysteresis in land-use conversions and reduce the rate of landscape change. We extend 

these past studies by introducing climate uncertainty to an irreversible adaptive resource 

management decision. The effect of uncertain climate variables on adaptation in forestry has not 

been studied. Two economic studies that do apply option value theory to climate adaptation 
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settings for land-use are worth a mention. One application of option value theory is the 

conservation auction mechanism of Lewis and Polasky (2018), developed as a tool for socially-

optimal adaptation to climate change. A second application of option value logic finds empirical 

evidence of large land market premiums for a policy option to armor shoreline against erosion 

from sea-level rise (Dundas and Lewis 2020). However, no prior studies analyze how climate 

uncertainty generates option values that affect private adaptation decisions regarding the use of 

natural resources. 

The source of uncertainty in most prior option value studies is primarily prices or land values 

(Mezey and Conrad 2010).  Also, none of these papers address the timing of these adaptation 

decisions. Many papers estimate the effect of uncertainty on decision thresholds rather than the 

actual decision but come to similar findings that risk/uncertainty increases the option value and 

delays irreversible decisions (Insley 2002, Regan et al. 2015, Mezey and Conrad 2010). Schatzki 

(2003) is one of the only papers that estimates the effect of uncertainty on a land-use decision 

rather than the effect of uncertainty on decision thresholds or the option value. 

While option value has been used to explain friction in land-use decisions (Schatzki 2003) and in 

other natural resource contexts including the decision to harvest a stand of trees or harvest old 

growth forests (Mezey and Conrad 2010; Clarke and Reed 1989; Reed and Clarke 1990; Insley 

2002; Reed 1993; Conrad 1997), there has been no work that has used option value to model the 

forest planting decision or more specifically, the decision to switch forest types. 

2.4 Empirical work on adaptation in general 

There are a handful of recent empirical analyses and simulation models of human adaptation to 

climate change across a range of sectors including forestry, agriculture, energy, extreme events, 

and coastal protection, reviewed in Massetti and Mendelsohn (2018). Notably, there is no 

discussion of the presence/effect of option value in these scenarios. Many of the adaptation 

decisions involved in these scenarios (forestry management decision, investment in coastal 

protection, managed retreat from sea-level rise, land-use changes) involve irreversible decisions. 

All of these are scenarios could potentially include the existence of an option value and thus, 

uncertainty can affect the conclusions about when and how these various climate adaptations will 

take place. Yet we are aware of no explicit test of climate uncertainty on adaptation.  
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2.5 Road map 

Section 3 provides context for the forest adaptation decision in the eastern United States. Section 

4 presents a theoretical model to identify the intuition of option value in this decision. Section 5 

outlines our empirical Methods. Section 6 presents our data. Section 7 and 8 present the results 

of our empirical estimation and our simulation exercise. We conclude with a discussion of our 

results, their implications, and avenues for future research. 

3. Incentives for adaptation in the Mid-Atlantic United States 
To illustrate the incentives that landowners in the eastern U.S. will have to switch to pine forests 

under climate change, Figure 1 presents a graph of two estimated Ricardian functions for a 

hardwood forest type (Elm-Ash-Cottonwood) and a pine forest type (Loblolly-Shortleaf). The 

graph in Fig. 1 is constructed by regressing a U.S. county-average for two different measures of 

annualized net returns per acre to forestry for these two forest types on quadratic functions of 

mean temperature using data from Mihiar and Lewis (2021).  Fig. 1 highlights the large 

economic premium that the mostly planted pine species, like loblolly pine, hold over natural 

hardwood forests like elm-ash-cottonwood at the higher temperatures that occur in the 

southeastern U.S., while also highlighting how that premium sharply disappears at lower 

temperatures. In a world of frictionless adaptation, a landowner with recently harvested land at 

locations with a mean temperature of about 12 degrees C would be indifferent between planting 

the two forest types, according to Fig. 1. At locations below this temperature, Elm-Ash-

Cottonwood forests have higher returns and would be preferred by the landowner, whereas above 

12 degrees, Loblolly-Shortleaf forests have higher returns and would be preferred. We refer to 

locations like this as the adaptive margin.  
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Figure 1: Ricardian Functions of Selected Pine and Hardwood Forest Types 

 

 

 

To put these data into the context of our paper, take the state of Kentucky for example, where the 

average temperature of FIA forest plots is 13.2 degrees C (slightly above the adaptive margin). 

At the same time 94% of FIA forest plots in Kentucky are hardwood forests. In 2050, the 

average temperature in Kentucky is projected to increase to 15.92 degrees C. With such 

temperature increases, Fig. 1 suggests that Loblolly-Shortleaf pines will become increasingly 

more profitable for the landowner than the Elm-Ash-Cottonwood hardwood forests.  

Fig. 1 is a simple example to illustrate the how climate change will create incentives for 

landowners in the mid-Atlantic region of the United States to adapt by planting pine forests. 

However, climate adaptation is not frictionless, and there is an economic reason why landowners 

may not switch the types of trees they are planting as soon as the returns to pines rise above the 

returns to hardwoods. Southern pines can be susceptible to cold temperatures, especially young 

stands (Lu et al. 2021; Nedlo et al. 2009; Pickens and Crate 2018; Schmidtling 2001) – so 

variation in wintertime cold temperatures creates uncertainty about the viability of planting 

pines. The combination of this climate uncertainty and the irreversibility of the planting decision 

generates our hypothesis that there is an option value associated with delaying the adaptation 

decision to plant pines. 

 
2 This uses aggregated MACA climate projections and assumes the RCP 8.5 warming scenario 

   

 

  

  

  

  

   

            

 
 
 
 
  
  
  
  
  
 
  
  
  
  
  
  
  
 

                    

                 

                  

Figure 1: this graph depicts the Ricardian functions of two forest types: Elm-Ash-Cottonwood (solid line) and 

Loblolly-Shortleaf (dashed line). The y axis is a per-acre measure of annual net returns to forestry. The x axis is 

mean temperature in degrees C. One way to look at this graph is to consider that moving left to right along the x 

axis is like moving from north to south in the eastern U.S. 
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4. A Theoretical Model of Climate Adaptation Under Uncertainty  
We extend the work of Guo and Costello (2013) and Hashida and Lewis (2019) to illustrate the 

role of uncertainty on the timing of forest management decisions. Consider the risk-neutral 

owner of a forest parcel with type F trees of age a in year t. If the owner harvests their stand they 

gain net harvest revenues of 𝑉𝑡
ℎ(𝐹, 𝑎) and then must choose the forest type to plant on their bare 

land post-harvest (ph). The post-harvest land value function from type F trees is a function of the 

state (s) of the future climate (𝑐𝑡+1
𝑠 ) on their land and is denoted 𝑉𝑡+1

𝑝ℎ|ℎ
(𝐹, 𝑎, 𝑐𝑡+1

𝑠 ). The future 

climate state 𝑐𝑡+1
𝑠  is uncertain to the landowner and thus a random variable. As such, the post-

harvest value function is a random variable and depends on the expectation over future climate 

states (written as 𝐸𝑠): 

𝐸𝑠[𝑉𝑡+1
𝑝ℎ|ℎ(𝐹, 0, 𝑐𝑡+1

𝑠 )] 

The landowner’s value function in time t is the solution to the problem of picking the maximum 

of i) harvesting the stand today and planting the optimal forest type F to maximize the expected 

post-harvest land value function, or ii) letting the stand grow in age to a+1: 

𝑉𝑡(𝐹, 𝑎, 𝑐𝑡) = 𝑚𝑎𝑥 {
𝑉𝑡

ℎ(𝐹, 𝑎) + 𝛿 ∙ max
𝐹

𝐸𝑠[𝑉𝑡+1
𝑝ℎ|ℎ(𝐹, 0, 𝑐𝑡+1

𝑠 )]𝐹=1
𝐹′

𝛿𝐸𝑠[𝑉𝑡+1(𝐹, 𝑎 + 1, 𝑐𝑡+1
𝑠 )]

                      (1) 

Where 𝛿 is the discount factor. If the landowner lets the stand grow in age to a+1, then Eq. (1) 

may also reflect management options besides commercial harvest, such as thinning or controlled 

burns. 

The climate adaptation decision on the extensive margin occurs when the landowner chooses 

type F trees to replant from a choice set of F’ different types of trees that can physically grow on 

their land (Guo and Costello 2013). A landowner that harvests in time t must make this choice 

with the climate information that is available in t, which is represented in the term 

max
𝐹

𝐸𝑠[𝑉𝑡+1
𝑝ℎ|ℎ(𝐹, 0, 𝑐𝑡+1

𝑠 )] in Eq. (1). A landowner that chooses not to harvest in t=1 postpones 

the adaptation decision of F at least until t=2. Therefore, the expected value of not cutting 

𝐸𝑠[𝑉𝑡+1(𝐹, 𝑎 + 1, 𝑐𝑡+1
𝑠 )] reflects the fact that the landowner will have gained new information 

about the set of future climate states occurring between time t and t+1 before making any 

future/subsequent adaptation decisions of F.  
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Since the harvest decision is irreversible, the problem in Eq. (1) belongs to a class of stochastic 

dynamic programming problems whereby the optimal choice depends on the existence of an 

option value of waiting to gain information on the uncertain variable – the future climate state 

𝑐𝑡+1
𝑠  in this case. Eq. (1) extends past studies (Mezzey and Conrad 2010) by bringing climate 

uncertainty into an irreversible resource management case that is viewed as an adaptation choice.  

A Two-Period, Two-State, Two-Forest Type Example 

Consider a simple example to set intuition for the factors that influence option values relevant for 

forestry climate adaptation. This example is motivated by our empirical context, whereby owners 

of hardwood forests in the eastern U.S. face the possibility of adapting to warmer temperatures 

by converting their forests to one of a group of more commercially valuable pine species that 

grow in the hotter portions of the southeastern U.S., commonly called yellow pines.3 As 

discussed above, young pines are susceptible to wintertime low temperatures, and future climate 

change will increase wintertime low temperatures in many areas to the north of the pines’ current 

range, thereby lowering the climatic barrier to planting pines. However, a key source of 

uncertainty is the possibility of significant wintertime cold spells that can damage young pine 

stands. If those cold spells don’t occur, pines are more likely to thrive and the landowner who 

plants pines will likely be better off than if they regenerated hardwoods. On the other hand, if 

wintertime cold spells do occur then there is a risk that the pines will be damaged for those 

owners that plant them, and they may have instead been better off regenerating hardwoods.  

 

To formalize this logic, consider a landowner that owns a hardwood stand (F=hw). Now assume 

a two-period setting where the current climate in t is known while future climate in t+1 can take 

one of two states: a high state (𝑐𝑡+1
𝐻 ) or a low state (𝑐𝑡+1

𝐿 ). Once the climate state in t+1 is 

revealed, there is no further uncertainty. Further, suppose that the post-harvest value function of 

hardwoods is unaffected by the future climate state, while the post-harvest value function of 

pines is higher in the high climate state than the lower climate state. Additionally, pines are more 

valuable than hardwoods in the high climate state while hardwoods are more valuable than pines 

in the low climate state. Eq. (2) summarizes the assumptions about the post-harvest value 

functions: 

 
3 Yellow pines in the U.S. southeast include loblolly, shortleaf, longleaf, and slash pines. 
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𝑉𝑡+1
𝑝ℎ|ℎ(𝑝𝑖𝑛𝑒𝑠, 𝑎, 𝑐𝑡

𝐻) > 𝑉𝑡+1
𝑝ℎ|ℎ(ℎ𝑤, 𝑎, 𝑐𝑡

𝐻) = 𝑉𝑡+1
𝑝ℎ|ℎ(ℎ𝑤, 𝑎, 𝑐𝑡

𝐿) = 𝑉𝑡+1
𝑝ℎ|ℎ(ℎ𝑤, 𝑎) >

𝑉𝑡+1
𝑝ℎ|ℎ(𝑝𝑖𝑛𝑒𝑠, 𝑎, 𝑐𝑡

𝐿)    

Finally, the landowner in time t has expectations of future climate states in time t+1. Let p be the 

landowner’s perceived probability that the high climate state occurs in t+1, and therefore (1-p) is 

their probability that the low climate state occurs. Though this is a stylized example, it fits the 

key feature of a forest landowners’ replanting problem – a landowner who plants trees today is 

subject to a random future climate state that determines how well their stand grows into the 

future. Under this simple two-period setup, harvest and replanting occurs in either t=1 or t=2, but 

the termination value of a t=2 choice is measured in t=3. Given the setup of this problem, the 

land value functions for the different management choices are presented in Table 1. 

Table 1: Land value function resulting from management choice in t=1 

Management 

Choice 

Land value function 

Harvest in t=1,  

plant hw 

𝑉1
ℎ(ℎ𝑤, 𝑎) + 𝛿𝑉2

𝑝ℎ|ℎ
(ℎ𝑤, 1) 

Harvest in t=1,  

plant pines 

𝑉1
ℎ(ℎ𝑤, 𝑎) + 𝛿[𝑝 ∙ 𝑉2

𝑝ℎ|ℎ(𝑝𝑖𝑛𝑒𝑠, 1, 𝑐2
𝐻) + (1 − 𝑝) ∙  𝑉2

𝑝ℎ|ℎ(𝑝𝑖𝑛𝑒𝑠, 1, 𝑐2
𝐿)] 

Wait and harvest 

in t=2 

𝛿𝑉2
ℎ(ℎ𝑤, 𝑎 + 1) + 𝛿2[𝑝 ∙ 𝑉3

𝑝ℎ|ℎ(𝑝𝑖𝑛𝑒𝑠, 1, 𝑐2
𝐻) + (1 − 𝑝)

∙  𝑉3
𝑝ℎ|ℎ(ℎ𝑤, 1, 𝑐2

𝐿)] 

 

The land value function resulting from management choices in t=1 can be used to define the 

option value of waiting along with some simple comparative statics. If it is optimal to wait until 

t=2 to make the management choice, the option value of waiting is the difference in the land 

value function from waiting and the optimal value function from harvesting in t=1:4 

 

  

 
4 If it is not optimal to wait, the option value is zero. 

(2)      
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[𝛿𝑉2
ℎ(ℎ𝑤, 𝑎𝑔𝑒 + 1) − 𝑉1

ℎ(ℎ𝑤, 𝑎𝑔𝑒)] + 

[𝛿2𝐸𝑆 max
{𝐹∈ℎ𝑤,𝑝𝑖𝑛𝑒𝑠}

𝑉3
𝑝ℎ|ℎ(𝐹, 1, 𝑐2

𝑆) − 𝛿 max
{𝐹∈ℎ𝑤,𝑝𝑖𝑛𝑒𝑠}

𝐸𝑠𝑉2
𝑝ℎ|ℎ(𝐹, 1, 𝑐2

𝑆)]                 (3) 

 

 

From Eq. (3), the option value of waiting is an increasing function of i) the growth in harvest 

value from waiting (first square bracket), and ii) the future value premium arising from making 

the optimal choice once the climate state S has been revealed rather than before it has been 

revealed (second square bracket). A key feature of Eq. (3) is that the expectation operator is 

outside the maximization operator when the optimal choice is made in t=2 once the climate state 

is realized, and the expectation operator is inside the maximization operator when the optimal 

choice is made in t=1 before the climate state is realized. One feature revealed by Eq. (3) is the 

classic tradeoff from waiting to harvest a forest stand – waiting delays the planting date for the 

new stand but allows the existing stand to grow in value.  

Now consider how the option value is affected by uncertainty by supposing that the variance of 

the post-harvest value function for pines increases while the mean stays fixed. If the variance of 

𝑉2
𝑝ℎ|ℎ(𝑝𝑖𝑛𝑒𝑠, 1, 𝑐2

𝑆) increases while the mean stays fixed, then pine values in the high climate 

state 𝑉2
𝑝ℎ|ℎ(𝑝𝑖𝑛𝑒𝑠, 1, 𝑐2

𝐻) must increase while pine values in the low climate state 

𝑉2
𝑝ℎ|ℎ(𝑝𝑖𝑛𝑒𝑠, 1, 𝑐2

𝐿) must decrease by the same amount. A fixed mean of the post-harvest pine 

value function means the expected value of harvesting and planting pines in t=1 remains 

unchanged. However, the one term in Eq. (3) that does change is 𝐸𝑆 max
{𝐹∈ℎ𝑤,𝑝𝑖𝑛𝑒𝑠}

𝑉3
𝑝ℎ|ℎ(𝐹, 0, 𝑐2

𝑆), 

which must increase since the reward from being able to flexibly plant pines only when the high 

climate state occurs has increased. Therefore, higher climate uncertainty increases the 

landowner’s incentive to delay the climate adaptation decision – which occurs at the post-

harvest, planting stage. Further, an increase in the value of pines in the high climate state - 

𝑉2
𝑝ℎ|ℎ(𝑝𝑖𝑛𝑒𝑠, 1, 𝑐2

𝐻) - increases the value from harvesting and planting pines in t=1 more than 

delaying the decision because planting in t=1 starts the stand growing sooner than delaying until 

t=2 (assuming positive discounting).  

Optimal choice once climate 

has been revealed 

Optimal choice before climate 

has been revealed 
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5. Empirical methods  
Given our theoretical framework and what we know about the incentives for landowners to adapt 

from Sec. 3, there are two hypotheses we want to test: 1) that uncertainty slows adaptation by 

lowering the incentive to plant pine, and 2) that the effect of uncertainty is dependent on a 

location’s proximity to the adaptive margin. We test these hypotheses by developing an 

empirical framework of forest management decisions that explicitly accounts for the effect of 

climate uncertainty. The key empirical contribution comes from our use of long-term weather 

variation to represent climate uncertainty. Climate uncertainty creates uncertainty in the value 

function of different management decisions like is found in Schatzki (2003) but integrated into 

the discrete-choice model of forest management under climate adaptation found in Hashida and 

Lewis (2019). We first describe our measure of uncertainty and then get into the estimation 

methods. 

5.1. Measuring uncertainty  

We construct a plot-level measure of climate uncertainty defined as the 20-year variance in 

minimum daily non-growing season temperatures5. We will refer to this variable as var(wtmin) 

for the remainder of the paper.  Previous research using real-options theory to model forest 

harvest and land-use decisions generally use future prices or returns as the source of uncertainty 

(Mezey and Conrad 2010; Schatzki 2003; Regan et al. 2015) rather than climate uncertainty. Our 

climate uncertainty measure varies at the plot-level giving us more variation to work with than 

prior empirical studies that measure uncertainty in returns at a courser scale (Schatzki 2003). 

Further, we do not impose a specific underlying stochastic process to develop our climate 

uncertainty measure, which has been a source of contention in previous options value literature 

(Insley 2002). Rather, we exploit historically observed variations in weather.  

The choice of climate variable to use in this uncertainty measure is driven by the specific 

planting decision considered in this study: the fact that pine forests are limited in their expansion 

northward by wintertime low temperatures.  Natural science studies have identified that average 

minimum winter temperatures are a key environmental variable determining the growth and 

 
5 We tested the performance of a few different measures of uncertainty, including var(wtmin) calculated over the previous 5 years 

as well as the number of days below freezing. We found that 1) the variance measure performed better than the number of days 

below freezing and 2) the long-term 20-year measure performed better in our model. Additionally, we tested a model that 

included both a short-term 5-year measure and a long-term measure of variance from 20 to 5 years prior to determine if there was 

any evidence supporting whether landowners update their expectations of climate.  
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survival of southern pines (Lu et al. 2021; Schmidtling 2001). Furthermore, unseasonably warm 

temperatures during wintertime can increase the risk of cold damage to southern pine seedlings, 

especially when followed by very cold temperatures (Pickens and Crate 2018). Because of these 

relationships between southern pine and cold temperatures, the variance of wintertime low 

temperatures captures uncertainty over the chance of survival and healthy growth of pine 

plantations. Specifically, conditional on a given average wintertime low temperature, a higher 

var(wtmin) would signify a greater uncertainty about whether or not a pine species, such as 

loblolly could grow in those regions whereas a lower var(wtmin) would represent greater 

certainty about the survival/profitability of these forests. 

Figures 2A-B illustrate the idea that the impact of uncertainty on planting pines will vary 

depending on proximity to the adaptive margin. Figures 2A-2B represent the distributions of daily 

minimum non-growing season temperatures of two plots with the same mean non-growing season 

temperature (𝑡𝑒𝑚𝑝̅̅ ̅̅ ̅̅ ̅). The vertical line depicts the boundary between the high climate state (𝑐𝑡+1
𝐻 ) 

and low climate state (𝑐𝑡+1
𝐿 ) discussed in Sec. 4. Fig. 2A shows temperature distributions of two 

plots that are well below the adaptive margin and could represent northern plots of forest land. 

While the plot with the wider distribution of daily low temperatures is more uncertain about what 

the future winters will look like, landowners on both plots would still be highly certain that their 

land is too cold for a planted pine forest to be more profitable than a hardwood forest. In this case, 

var(wtmin) does not have an impact on the decision to plant pines.  
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Figure 2A 

 

 

 

 

 

Figure 2B 

 

 ← 𝑐𝑡+1
𝐿     𝑐𝑡+1

𝐻 →     
𝑡𝑒𝑚𝑝̅̅ ̅̅ ̅̅ ̅ 

 ← 𝑐𝑡+1
𝐿     𝑐𝑡+1

𝐻 →     

𝑡𝑒𝑚𝑝̅̅ ̅̅ ̅̅ ̅ 
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On the other hand, Figure 2B depicts two theoretical plots closer to the adaptive margin. These 

plots also have the same average winter temperature (𝑡𝑒𝑚𝑝̅̅ ̅̅ ̅̅ ̅), much closer to the adaptive margin 

but with two different levels of var(wtmin). We would expect to find plots like these from Fig. 2B 

in areas such as Tennessee and Kentucky. In this case the landowner in the location with less 

variation in wintertime temperatures is more certain about the high climate state occurring in the 

future compared to the location that has experienced much greater variation in wintertime 

temperatures. In locations close to the adaptive margin such as those depicted in Fig. 2B, we would 

expect the effect of var(wtmin) to have a greater impact on harvest and planting decisions.  

5.2. Empirical specification   

We use a discrete-choice, random utility framework with a nested structure to estimate the 

management decisions, building off the discrete-choice framework of Hashida and Lewis (2019). 

An owner of a timber stand faces the decision of whether to harvest their stand or not. 

Conditional on harvesting, they face the decision of whether to plant pines or regenerate 

hardwoods. Conditional on not harvesting, the stand grows, and the landowner bears some risk 

of natural disturbance. The planting decision and the disturbance model are estimated separately 

as the two lower nests. The solutions of the planting and natural disturbance models are 

embedded in the upper nest harvest decision using the nested logit structure (Train 2009). 

Climate enters into the planting and the natural disturbance nest, and also affects the harvest 

decision due to the inclusive value from the nested logit structure. Given our focus on how 

climate uncertainty might delay adaptation from hardwoods to pine, and given that pines are 

predominantly established through planting on cleared land, we define harvest as having 

received a clear-cut harvest. Any partial cuts are embedded in the “no-harvest” nest and we do 

not separately estimate drivers of partial cut harvests. 

Planting Model 

We define the planting decision as a binary choice between planting managed pine forests or 

natural hardwood forests. To construct our binary dependent variable, we assign forest type 

groups into two choice categories: managed pines and natural hardwoods6. Table A1 in the 

 
6 Of all the plots in our sample area that have been planted, we determine the proportion of plots in each forest group that were 

artificially regenerated (as opposed to naturally regenerated). Forest groups with more than 50 percent of planted plots that were 

artificially regenerated are categorized as “managed pine” while those with less than 50 percent of plots artificially regenerated 

are categorized as “natural hardwood”. 
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appendix presents the results of this categorization. Conditional on harvesting, a landowner can 

choose to either plant a managed pine stand or regenerate natural hardwoods. We assume that the 

plots of land must remain in forests, which eliminates the option of converting the land to 

another use7.   

Post-harvest, a landowner of plot n chooses the forest type j in time t that maximizes the net 

present value of their land. We choose spatially and temporally varying climate variables to test 

the relationship between climate and the planting decision and include other explanatory 

variables that we expect to affect the post-harvest land value 𝑉𝑛𝑗𝑡
𝑝ℎ|ℎ

. We specify the post-harvest 

land value 𝑉𝑛𝑗𝑡
𝑝ℎ|ℎ

 from Eq. (1) in random utility form as follows: 

𝑉𝑛𝑗𝑡
𝑝ℎ|ℎ

= 𝛽0 + 𝛽1𝑗𝑤𝑡𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑡 + 𝛽2𝑗𝑝𝑟𝑒𝑐𝑖𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑡 + 𝛽3𝑗𝑙𝑎𝑛𝑑𝑛 + 𝛽4𝑁𝑅𝑟(𝑛)𝑗𝑡 + 𝛽5𝑁𝑅𝑟(𝑛)𝑗𝑡 ∗

𝑤𝑡𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑡 + 𝛽6𝑗𝑣𝑎𝑟(𝑤𝑡𝑚𝑖𝑛)𝑛𝑡 + 𝛽7𝑗𝑣𝑎𝑟(𝑤𝑡𝑚𝑖𝑛)𝑛𝑡 ∗ 𝑤𝑡𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑡 + 𝜀𝑛𝑗𝑡       

For 𝑝ℎ = 𝑝𝑙𝑎𝑛𝑡|𝑐𝑙𝑒𝑎𝑟 − 𝑐𝑢𝑡                       

Where 𝑤𝑡𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑡 represents the average wintertime maximum temperature from the 30 years 

prior to t, 𝑝𝑟𝑒𝑐𝑖𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑡 represents average annual precipitation from the 30 years prior to t. The 

choice of these two variables was determined by the primary climatic factors affecting pine 

growth and survival, which are wintertime temperatures and precipitation. It is well known in the 

forest biology literature that the distribution of southern pine species is limited to the north by 

cold temperatures and to the west by low levels of precipitation (Schmidtling 2001; Lu et al. 

2021). 

 
7 Inclusion of the choice to convert land to other uses should be considered in future work but is outside the scope of this paper. 

To accomplish this, an understanding of the effects of climate on returns to other land uses is needed. The assumption that 

landowners cannot convert their land to other uses may mean that our results do not show how the area of forestland changes as 

relative profits of various land uses change, but even without this aspect, our results still provide valuable insights into the 

tradeoffs between forest groups and its interaction with climate. 

(4) 
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The variable 𝑙𝑎𝑛𝑑𝑛 is an indicator of land quality measured with the FIA’s site class8, and 

𝑁𝑅𝑟(𝑛)𝑗𝑡
9 is the average net returns to forest group j for plot n in region10 r. The key explanatory 

variable measuring climate uncertainty is 𝑣𝑎𝑟(𝑤𝑡𝑚𝑖𝑛)𝑛𝑡, which is the variance of minimum 

daily wintertime low temperature in the 20 years prior to year t. The interaction term between 

𝑣𝑎𝑟(𝑤𝑡𝑚𝑖𝑛)𝑛𝑡 and 𝑤𝑡𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑡 allows the effect of 𝑣𝑎𝑟(𝑡𝑚𝑖𝑛)𝑛𝑡 to vary across different climates 

as illustrated by Figure 2. The interaction 𝑁𝑅𝑟(𝑛)𝑗𝑡 ∗ 𝑤𝑡𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑡 scales the regional average net 

return based on plot-level variation in 𝑤𝑡𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑡. Finally, there are unobservable factors that 

drive management choice j (e.g. landowner skill) that are captured in 𝜀𝑛𝑗𝑡. The choice j specific 

parameters must be normalized to zero for one choice for identification. 

We exploit the within-region climate variation to identify the relationship between climate and a 

landowner’s replanting decision. This relationship arises because climate conditions such as 

temperature and precipitation are key factors that affect the growth of trees and, consequently, 

the value of the forestland (Hashida and Lewis 2019; Schmidtling 2001; Lu et al. 2021). While 

the climate variables vary across plots of land 𝑛, they do not vary over the choice of forest group 

j. As such, in the econometric specification, the coefficients on each of the three climate 

variables are indexed by choice in order to estimate differences in land value. Intuitively, we 

would also expect the relationship between climate and land value to be different across different 

forest groups. If southern pine species are more suited to warmer temperatures, we would expect 

a positive relationship between temperature and land values for plots with those species planted. 

On the other hand, a hardwood forest type may not be well suited to warmer climates and in that 

case, we would expect a negative relationship between temperature and land values for plots 

with that forest type.  

 
8 The site class code takes on discrete values from 1 to 7 where 1 indicates the highest land quality. A site class code of 1 

indicates that the plot of land can potentially grow timber at a rate of 225+ cubic feet/acre/year, whereas a site class code of 7 

indicates a growth rate of 0-19 cubic feet/acre per year. 
9 Due to the timeframe between planting and harvest, forest owners only have an expectation of their profits from planting a given 

forest type. As such, we construct an expected net returns variable to approximate how a landowner may assess the economic 

tradeoffs of different replanting choices, a key determinant of their replanting decision and the overall value of a parcel of 

forestland. As net returns to forest type 𝑗 increase, the value of a parcel of land with forest type j will also increase. Therefore, if a 

landowner’s expectations of net returns to forest type j increase, the probability that they choose to replant j also increases. We 

assume that the relationship between expected net returns and the replanting decision does not vary across forest types and therefore 

we do not index its coefficient by j.  
10 Regions are defined by the FIA survey units and are comprised of 18 counties on average. Each state has on average 5 regions. 

There are 50 regions in our study area. See Figure 1 for map of the study area with the price regions displayed. 
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The planting model is estimated using a pooled cross-sectional dataset of harvested plots. Due to 

the timespan of our sample, we only observe one harvest for any one of these plots. We 

recognize that with pooled cross-sectional data, our estimation is more susceptible to omitted 

variable bias compared to a panel data with plot fixed-effects. While we expect some omitted 

variables in 𝜀𝑛𝑗𝑡 such as management experience, risk preferences, and reasons for owning land 

to affect the planting decision, it is unlikely that these characteristics are correlated with climate 

or climate uncertainty. As such, their exclusion from the model would not bias our estimates of 

the coefficients on our variables of interest (𝑣𝑎𝑟(𝑤𝑡𝑚𝑖𝑛)𝑛𝑡, 𝑤𝑡𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑡, and  𝑝𝑟𝑒𝑐𝑖𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑡 ). 

Natural Disturbance Model 

If a landowner chooses not to harvest their forest, it will continue to grow but also face the 

possibility of being naturally disturbed by weather, fire, pests, animals, or disease. We estimate 

this probability in the second lower nest. We define a plot as naturally disturbed if two 

conditions are met: 1) it is observed to have been naturally disturbed, and 2) it has experienced 

negative growth, which indicates the disturbance caused substantial damage to the stand. The 

probability of disturbance, conditional on a plot not being harvested, is a function of climate 

variables, ownership, elevation, and location. Disturbance is estimated with the following latent 

value binary outcome specification: 

𝑉𝑛𝑡
𝑝ℎ|ℎ

= 𝛽0 + 𝛽1𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑛 + 𝛽2𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑛 + 𝛽3𝑡𝑚𝑒𝑎𝑛𝑛𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝛽4𝑛𝑔𝑝𝑟𝑒𝑐𝑖𝑝𝑛𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝛽5𝑠𝑡𝑎𝑡𝑒𝑠(𝑛) + 𝜀𝑛𝑗𝑡 

For 𝑝ℎ = 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 𝑒𝑣𝑒𝑛𝑡 | 𝑛𝑜 ℎ𝑎𝑟𝑣𝑒𝑠𝑡                    

Where disturbn is a binary variable equal to 1 if the plot has been naturally disturbed and 0 if not; 

elevation is the plot’s elevation; 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑛 is a binary variable indicating whether the plot is 

privately owned or otherwise; 𝑡𝑚𝑒𝑎𝑛𝑛𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean annual temperature; 𝑛𝑔𝑝𝑟𝑒𝑐𝑖𝑝𝑛𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the 

average precipitation during non-growing season; and 𝑠𝑡𝑎𝑡𝑒𝑠(𝑛) is a vector of dummy variables 

indicating the plot’s state. It is widely established in forest ecology that climate variables such as 

temperature and precipitation can affect forests’ susceptibility to damage from pests and disease, 

their ability to suppress fires, as well as damage from weather events such as freezing 

temperatures, ice, flooding and drought (Mattson and Haack 1987; Weed et al. 2013).  

(5) 
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Harvest Model 

The harvest decision is estimated as the upper nest, which embeds the solutions from the lower 

nest planting and disturbance models.  Given a plot of forestland, the landowner can choose to 

harvest or let their stand grow for another period. The harvest decision is a function of the 

estimated revenue from the associated harvest decision and the inclusive values from the 

planting and disturbance models:  

𝑉𝑛𝑘𝑡
ℎ = 𝛽0 + 𝛽1𝑗𝑟𝑒𝑣𝑛𝑘𝑡 + 𝛽2𝑗∆𝑟𝑒𝑣𝑛𝑘𝑡 

Where  𝑘 =  {
1 𝑖𝑓 𝑐𝑙𝑒𝑎𝑟 𝑐𝑢𝑡
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

And 𝑟𝑒𝑣𝑛𝑘𝑡 is the revenue associated with the harvest decision. For the clear-cut decision, 

revenue is calculated as the price times the volume of wood on the plot – what the landowner 

would receive if they clear cut their plot today. The term ∆𝑟𝑒𝑣𝑛𝑘𝑡 reflects the additional revenue 

the landowner would receive if they let their trees grow another period. As shown in Eq. (1), the 

harvest decision is dependent on both 𝑉𝑛𝑘𝑡
ℎ  and on the optimized post-harvest value function, 

represented in the nested logit model by the inclusive values formed from the planting and 

natural disturbance nests [𝐼𝑛𝑘𝑡
ℎ = 𝑙𝑛 ∑ 𝑒𝑥𝑝(𝑉𝑛𝑗𝑡

𝑝ℎ|ℎ
𝜆𝑘⁄ )2

𝑗=1 ]. The inclusive value is the optimized 

value of the respective lower nest model. The nested logit model embeds 𝐼𝑛𝑘𝑡
ℎ  into the harvest 

model as a set of independent variables for each k. If a generalized extreme value captures 

unobservable drivers of harvest decisions, then the probability of the full set of management 

actions is defined with a nested logit representation (Train 2009): 

𝑃𝑟𝑜𝑏𝑛𝑗𝑡 = 𝑃𝑟𝑜𝑏𝑛𝑘𝑡
ℎ ∙ 𝑃𝑟𝑜𝑏𝑛𝑗𝑡|𝑘

𝑝ℎ|ℎ
=

exp (𝑉𝑛𝑘𝑡
ℎ +𝜆𝑘𝐼𝑛𝑘𝑡

ℎ )

∑ exp (𝑉𝑛𝑘𝑡
ℎ +𝜆𝑘𝐼𝑛𝑘𝑡

ℎ )𝐾
𝑘=1

∙
exp (𝑉𝑛𝑗𝑡

𝑝ℎ|ℎ
/𝜆𝑘)

∑ exp (𝑉
𝑛𝑗𝑡
𝑝ℎ|ℎ

/𝜆𝑘)
𝐽
𝑗=1

                

The advantage of the nested logit model is that the empirical structure of the model reflects the 

theoretical nesting structure from Eq. (1) – the optimized post-harvest decision affects the 

harvest decision directly.  The data used to estimate the harvest decision is an unbalanced panel 

since we observe the harvest decision at least twice on a majority of the plots (84%) in our 

sample. 

(7) 

(6) 
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6. Data and Study Area 

6.1. Study area 

Our study area comprises 11 states in the southeast and mid-Atlantic United States and has some 

key characteristics that make it an ideal location to study the effects of option value on climate 

adaptation. First, over 86% of the forestland in the southeastern United States is privately owned, 

which means that changes in forest composition will primarily be the result of economically 

motivated management decisions (harvest and planting) of landowners. Second, the most 

valuable trees are in warmer locations in the south while the cooler regions in the inland mid-

Atlantic (Kentucky and Tennessee in particular) are dominated by less valuable hardwood forests 

(Fig. 3A and 3B). Comparing Fig. 3A and 3B, we see a relationship between the location of pine 

forests and higher temperatures. The majority of pine forests are located in the deep south (LA, 

GA, AL) and nearer the coast throughout the Carolinas and Virginia, whereas states such as 

Tennessee and Kentucky have relatively fewer pine forests. Third, there is distinct spatial 

heterogeneity in our key measure of climate uncertainty (Fig. 3C): the variance of the wintertime 

cold temperatures is notably lower in the region east of the Appalachian Mountains and much 

higher north and west of those mountains. This variation in climate uncertainty is critical for 

identifying its impact on forest management decisions. 

Figures 3A-C: FIA forest plots in the southeastern and mid-Atlantic United States 

 

B: Distribution of MWT across study area 

 

 

 

 

 

 

 

 

A: Current distribution of hardwoods and pines (see Table A1 for the 

categorization of forest types into these choice groups). 
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As temperatures warm under climate change, areas in the mid-Atlantic United States are 

expected to reach temperatures similar to the region directly south. Consequently, landowners in 

the mid-Atlantic will be presented with economic incentives to plant pine forests in favor of 

hardwood forests (Figure 1).  Including southern states in our study, such as Alabama, Georgia, 

Louisiana, and Mississippi, gives us the range of climate data needed to estimate the relationship 

between warmer temperatures not currently seen in the mid-Atlantic and observed planting 

decisions. This aspect of our data overcomes a common challenge in empirically estimating 

B: Current mean temperature during the non-growing season 

C: Current level of climate uncertainty, measured by variance in wintertime 

low temperatures, 𝑣𝑎𝑟(𝑤𝑡𝑚𝑖𝑛). This map also indicates the approximate 

location of the three sample plots used in our simulation of future adaptation 

decisions (see Section 8). 
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climate adaptation decisions which is the fact that historical climate has not experienced the 

changes that are projected to occur into the 21st century. Empirically estimating this relationship 

is difficult if researchers aim to predict how people will adapt to never-before-seen climate 

(Massetti and Mendelsohn 2018). The diverse climate and forest management decisions within 

our study area overcome this challenge. Our identification of the effects of climate on 

management decisions relies primarily on the spatial variation in long-term climate variables, 

including our measure of climate uncertainty. 

6.2. Data 

We use plot-level panel data with 61,540 observations of forest management decisions across 

30,903 plots measured by the USFS FIA from 2002 to 2014. The FIA conducts annual 

inventories of about 20% of all plots in each state in the southern region so each plot in this 

region is measured approximately once every five years. The FIA inventory measures various 

tree and land characteristics through both on-the-ground field crews and remote measurement 

techniques. For each observation, the FIA indicates the forest type, ownership, management 

decisions, disturbance events, site quality, tree volume and growth11, and other plot 

characteristics. We combine these data with downscaled climate data from the Parameter-

elevation Regressions on Independent Slopes Model (PRISM), as well as data on annualized net 

returns to forestry developed by Mihiar and Lewis (2021). A full list of data and sources are 

found in Table A2 of the Appendix.  

Of the 61,540 observations of management decisions, 3,131 (5.1%) of those are harvests12 and are 

used to estimate our planting model. Because of the time-span of our data set and the rotation 

lengths, we only observe the planting decision once for any given harvested plot, leaving us with 

a cross-sectional dataset to estimate this model. The remaining 58,409 observations are non-

harvests and are used to estimate the disturbance model. All observations are used to estimate the 

upper nest harvest model. Both the disturbance model and harvest model are estimated with 

 
11 Volume measured for a handful of site trees on a plot. To calculate the total volume on a plot, we multiply each recorded tree’s 

volume by its trees-per-acre (TPA) expansion factor and aggregate the volumes within each species group within each plot. This 

gets us the volume per acre for each species group within each condition. To calculate volume growth, we use net annual 

merchantable cubic-foot growth variable from the FIA and aggregate it in the same fashion to get the cubic foot annual growth 

for each species group on a given plot. These volume and growth measurements are then converted to thousand board feet (mbf). 
12 We define a harvested plot as one that has been clear cut. Plots that have been partially cut are not included in our definition of 

harvested. 
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unbalanced panel datasets as there are 9,668 plots (16% of the total observations) that have only 

been measured once.  

As discussed in section 6.1, we categorize planting decisions into our two choice groups: planted 

pines and hardwoods (Table A1). Fig. 3A shows how these forest types are distributed across the 

study area. Table A3 presents the proportion of plots in each forest group for each state and the 

whole sample. Planted pine forests make up 43% of our sample, while natural hardwood forests 

make up the other 57 % (Figure 4). When broken down by state, this distribution changes. In 

Kentucky, for example, only 5 percent of the plots are in planted pine, compared to South Carolina 

where 43 percent of plots are in planted pine, and Georgia where 55% of plots are in the pine 

choice group (Table A5).  

PRISM Climate Data: 

We map downscaled climate data (800m resolution) from the Parameter-elevation Regressions on 

Independent Slopes Model (PRISM) to our FIA plots. Using daily historical climate data, we 

construct 30-year means for the following climate variables: mean daily maximum temperature 

during the non-growing season (𝑤𝑡𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅), mean annual temperature (𝑡𝑚𝑒𝑎𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅), mean annual 

precipitation (𝑝𝑟𝑒𝑐𝑖𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅), and mean non-growing season total precipitation (𝑛𝑔𝑝𝑟𝑒𝑐𝑖𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ). We also 

utilize daily historical climate data from PRISM to construct our measure of climate uncertainty13, 

(𝑣𝑎𝑟(𝑤𝑡𝑚𝑖𝑛))(Fig. 3C).  

 
13 We test three different uncertainty variables: variance in minimum wintertime temperature (MWT) over the years 1990:2015, 

variance in minimum non-growing season temperature of the 5 years preceding the year the plot was measured, (for example, if a 
plot was measured in 2005, we take the variance of non-growing season minimum temperatures over 2000-2004 and yearly 

average number of days below 0° C. 
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Figure 4: Proportion of forest groups in the study area

 

 

Net Returns to Forestry and Stumpage Price Data: 

We use a county-level data set of the annualized net economic returns to forestland for each year 

from 1998-2014 (Mihiar and Lewis 2021). These returns are calculated using observed local 

stumpage prices georeferenced to the county level, and rotation lengths that are empirically 

observed using the FIA data. The rotation lengths are forest type-specific and observed at the 

state level. One advantage of using observed rotation lengths is that we do not have to impose an 

assumption about future climate in determining rotation length, as would be the case if an 

optimal Faustmann rotation were used. To avoid the identification issues that stem from a lack of 

within-county climate variation14, we aggregate these net returns data to a regional level for each 

of these two categories of forests. Regions are defined by the FIA survey groups. There are 21 

regions in our data set, with an average of 20 counties per region (Fig. 5). This aggregation of net 

returns is advantageous for two main reasons: first, the within-region climate variation is now 

much greater than within-county climate variation; second, we lose fewer observations as a result 

of missing county-level net returns data. From these data, we construct a measure of expected net 

returns to each replanting choice by taking an average of the net returns from the five years 

preceding time t. Ultimately, this results in expected net returns data for the years 2002-2014 

 
14 Net returns data do not exist for every forest group in every county. This could either be because price data was not collected 

or reported in a county or because there is minimal to no market activity for a forest group in a county (in other words, a very 

small amount of trees of a forest group are being bought and sold in that county or that forest group is not even growing in that 

county) (Mihiar and Lewis 2021). 
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which varies across regions and the two planting choices. Additionally, we use the recorded 

stumpage price data from this dataset to calculate the marginal costs and benefits of harvesting 

used to estimate our harvest model. Prices are recorded at the county-level annually from 1998-

2014 and matched to each tree species group.  

Figure 5: Price Regions 

  

In the case of our study area, pine forests are the more valuable forest type with average net returns 

of $23.12 per acre compared to an average net return of $9.36 per acre of hardwood forests. The 

values of these forests vary spatially as well. Net returns to pines vary from an average of $12.34 

in Virginia to an average of $29.33 in Tennessee. Summary statistics for all explanatory variables 

are provided in Table A5 and summary statistics for selected variables across forest types are found 

in Table A4 in the Appendix.  

7. Econometric Estimation Results 
Our planting model is estimated using 3,131 observations of harvested plots. We estimate two 

different planting models: our preferred model that includes var(wtmin) as an explanatory 

variable (column (1) in Table A6), and an alternative model that does not include var(wtmin) 

(column (2) Table A6). The disturbance model is estimated using the remaining 58,409 

observations of plots that were not harvested. Finally, we estimate the harvest model (upper nest) 

using our panel of 61,540 observations.15 The full set of parameter estimates are presented in 

Table A6 of the appendix while estimated partial effects are presented in Table A7. Using the 

 
15 Approximately 16% of plots are only observed once in the data, while the remaining 84% of plots are observed at least twice 

each. 

N 
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average climate of each state and the whole sample as the baseline, we estimate the partial 

effects of the average projected climate changes for the region (2 °C increase in wintertime 

temps 80 mm increase in precipitation) and a two standard deviation increase in var(wtmin) for 

each state and the sample as a whole. A few key results are discussed below. 

The statistically significant parameters (p<0.05) of the planting model include the parameters on 

var(wtmin), precipitation, temperature, net returns, the interaction between var(wtmin) and 

temperature, and site class. All signs are as expected and intuitive, e.g. higher net returns to a 

forest type increases the probability of choosing that forest type for replanting. The parameter 

estimate for var(wtmin) is negative and significant (p<0.01) indicating that uncertainty lowers the 

probability of planting pine, while the interaction between variance and temp is positive and 

significant (p<0.01), implying that the warmer a location is during the winter, the larger effect 

var(wtmin) will have on the decision to plant pines. The positive parameter on this variance-

temperature interaction confirms our hypothesis that wintertime low temperature variance is 

likely to have a larger effect on plots that are closer to the adaptive margin between hardwoods 

and pines. All parameters in the harvest model are statistically significant (p<0.05) and intuitive, 

while the statistically significant parameters (p<0.05) in the disturbance model are the 

parameters on elevation, ownership, and the dummy variables for Louisiana, Mississippi, and 

South Carolina.  

Given the non-linearity and interactions in the econometric model, we examine estimated partial 

effects in Table A7, which are evaluated at the average climate of each state in our sample. Key 

results include the following. First, an increase in wintertime maximum temperatures raises the 

probability of planting pines and the probability of harvesting in all states except Arkansas and 

South Carolina where there is no significant impact. There is no significant impact on the 

probability of natural disturbance. The partial effect of a 2°C increase in temperature increases 

the probability of planting pine by between 2.8% (Virginia) and 7.8% (Mississippi). Second, an 

increase in precipitation raises the probability of planting pines and the probability of harvesting 

in all states but has no significant impact on the probability of natural disturbance. The partial 

effect of an increase of 80mm of precipitation (the projected average increase for this region) 

increases the probability of planting pine by between 2.2% (Kentucky) and 5.7% (Alabama, 

Arkansas, Georgia, Mississippi, North Carolina, and South Carolina). Third, and most important 
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for this study, an increase in the variance of wintertime low temperatures has a large negative 

effect on the probability of planting pines and the probability of harvesting in all states. An 

increase in var(wtmin) of two standard deviations is estimated to decrease the probability of 

planting pines by between 7.3% (Kentucky) and 21% (Arkansas and North Carolina). It reduces 

the probability of planting pines by 18% when calculated for the whole sample. Given that 

var(wtmin) varies considerably from state to state (Table 1 and A5, Figure 3), it is difficult to 

compare these partial effects across states. Two standard deviations is a relatively large change 

for states such as the Carolinas and Virginia where mean var(wtmin) is around 26 but a smaller 

change for states such as Kentucky and Tennessee where mean var(wtmin) is around 36.  

8. Future climate simulation  
The marginal effects from the econometric model provide insight as to how climate and climate 

uncertainty affect the probabilities of harvesting and planting pine forests, but do not explicitly 

indicate when those decisions may happen.  However, because we have explicitly modeled 

climate uncertainty in our econometric model, we are able to simulate how changes in 

uncertainty alter the time path of adaptation into the future. We simulate the forest management 

decisions for three sample plots under climate change. The simulation allows us to model the 

dynamics of forest growth and the timing of harvest and planting decisions while accounting for 

the stochastic nature of the econometric model. The fact that harvests and subsequent plantings 

happen infrequently and after long periods of growth does not get captured in the econometric 

results. Furthermore, by simulating the results across sample plots, we can model the results of 

spatially heterogeneous future climate projections.  

8.1. Simulation methodology 

The simulation works as follows. For a given sample plot n, the econometric model provides an 

estimated probability of harvest choice k (𝑃𝑟𝑜𝑏̂𝑛𝑘𝑡
ℎ ) and estimated probabilities of post-harvest 

management choice j (𝑃𝑟𝑜𝑏̂𝑛𝑗𝑡
𝑝ℎ|ℎ

). Our sample plots are currently in oak-hickory (t=0 in the 

simulation) with an observed growing stock volume that generates an expected revenue upon 

harvest (𝑟𝑒𝑣𝑛𝑗𝑡) or an expected revenue growth if not harvested (∆𝑟𝑒𝑣𝑛𝑗𝑡), which plug in to 

𝑃𝑟𝑜𝑏̂𝑛𝑘𝑡
ℎ  and provide us with an estimated harvest probability conditional on the plot’s current 

state in t=0. A uniformly distributed random number r between 0 and 1 is drawn and compared 

to 𝑃𝑟𝑜𝑏̂𝑛𝑘𝑡
ℎ , and if 𝑟 < 𝑃𝑟𝑜𝑏̂𝑛𝑘𝑡

ℎ  the plot is harvested and if 𝑟 ≥ 𝑃𝑟𝑜𝑏̂𝑛𝑘𝑡
ℎ  it is not harvested. If the 
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plot is not harvested in t=0, then we use estimated timber yield functions from Mihiar and Lewis 

(2021) to determine how the plot grows until the next period when the harvest decision is 

considered again. If the plot is harvested in t=0, then we draw a different random number 𝑟𝑝ℎ 

and plant pines if 𝑟𝑝ℎ < 𝑃𝑟𝑜𝑏̂𝑛𝑗𝑡
𝑝ℎ|ℎ

 and plant hardwoods if 𝑟𝑝ℎ ≥ 𝑃𝑟𝑜𝑏̂𝑛𝑗𝑡
𝑝ℎ|ℎ

. If pine is planted, we 

assume that the plot will remain in pine and the simulation stops. If a hardwood forest is planted, 

we use the hardwood yield functions from Mihiar and Lewis (2021) to determine how the stand 

grows until the next period. Repeating this process over multiple time periods and with many 

different random draws generates a simulated distribution of outcomes. Since these estimated 

timber management probabilities are functions of climate, we use climate projections to 

determine how they evolve over time. For each sample plot, we simulate future scenarios with 

and without climate change in 5-year time steps starting in 2020 and ending in 2100. Our Monte 

Carlo simulation is repeated 1000 times, generating 1000 different adaptation paths. We then 

calculate the proportion of times that the plot switches to pine within a given number of years 

(from 10 to 80 years) relative to the scenario of no climate change and graph the results (Figure 

4). 

The sample plots were chosen as ones that have a similar climate to their state’s average climate. 

The three sample plots are in Kentucky, Tennessee, and Virginia. The key climate measures of 

these plots are presented in Table 2. Kentucky and Tennessee are states currently dominated by 

hardwoods and on the adaptive margin where forest transitions are most likely to occur. The plot 

in Virginia was chosen as a point of comparison – it is the northernmost plot in our sample, in a 

region where we expect temperatures to be too cool under climate change for landowners to 

plant pines. We use downscaled Multivariate Adaptive Constructed Analogs (MACA) future 

climate projections assuming the RCP 8.5 scenario to create the future yearly climate measures 

for our sample plots.16 17 All plots are expected to become warmer and wetter. We do not present 

the future projections of 𝑣𝑎𝑟(𝑤𝑡𝑚𝑖𝑛) in Table 2 as they deviate significantly from their current 

level and show no clear trend through time or across climate models (Fig. A1). 

 

 
16 The results presented here use climate projections based on the Can ESM2 model.  
17 Each future year’s climate measure is an average of the climate of the preceding 20 years. 
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Table 2: Current and future climate projections of simulation sample plots 

 
Current Climate (PRISM) 

Projected 2099 Climate  

(RCP 8.5 MACA) 

State 
𝒗𝒂𝒓(𝒘𝒕𝒎𝒊𝒏) 

𝒘𝒕𝒎𝒆𝒂𝒏 

(°C) 

𝒕𝒎𝒆𝒂𝒏̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

(°C) 

𝒑𝒓𝒆𝒄𝒊𝒑̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(mm) 

𝒘𝒕𝒎𝒆𝒂𝒏 

 (°C) 

𝒕𝒎𝒆𝒂𝒏̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

(°C) 

𝒑𝒓𝒆𝒄𝒊𝒑̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(mm) 

TN 37.31 9.35 14.49 1358.6 13.85 20.13 1579.3 

VA 26.81 5.47 11.18 995.6 9.58 17.16 1141.8 

KY 40.58 7.56 13.10 1227.4 11.38 18.67 1408.9 

 

8.2. The effects of current levels of climate uncertainty on adaptation 

A primary goal of the simulations is to isolate the effects of climate uncertainty on the time-path 

of adaptation from hardwoods to pine forests. The first approach we take is to explore how the 

current spatial variation in var(wtmin) affects the time-path of adaptation for our three sample 

plots. Our study area has a wide range of var(wtmin) with mean var(wtmin) being lower in the 

coastal states, particularly North Carolina and Virginia, and higher just west of the Appalachian 

Mountains (Figure 3C, Table 3). To explore the effects of different levels of var(wtmin), we 

simulate the time-path of adaptation under climate change while first holding var(wtmin) fixed at 

its current level, and then repeating the simulation for each sample plot but replacing its 

var(wtmin) with both the largest and smallest var(wtmin) in the study area (45.5 in Kentucky and 

20.9 in North Carolina). The results from these scenarios are graphed alongside the baseline 

scenario (Figure 4). 

Table 3: Min, max, and mean var(wtmin) across states 

Var(wtmin) by state  

  AL AR GA KY LA MS NC SC TN VA 

Min 24.4 25.9 23.4 27.1 27.5 26.8 20.9 22.3 26.9 21.2 

Max 44.5 38.9 36.9 45.6 39.0 40.1 40.3 31.8 43.3 39.8 

Mean 34.7 30.7 29.1 36.9 32.7 35.1 25.9 26.6 34.8 26.8 
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Figure 4: Simulation Results 
 A: Adaptation paths under different levels of 

uncertainty 

B: Adaptation paths when uncertainty is 

excluded from empirical model 
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Figure 4: Results of the simulation for selected sample plots. Column (A) presents the different adaptation paths 

that result from replacing a plot’s var(wtmin) with that of another location. It also shows the range of adaptation 

paths that could occur given the range in projected var(tmin) across time and across different climate models. 

Column (B) presents the results of the full empirical model and the empirical model that ignores variance in the 

non-growing season low temperature. 
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There are three main takeaways from the simulation results presented in Column A of Fig. 4.  

1) All else equal, increased climate uncertainty slows adaptation: 

These results are consistent across all three sample plots. For all three sample plots, when a 

larger var(wtmin) is substituted, the speed of adaptation diminishes relative to the baseline 

scenario. On the other hand, when a smaller var(wtmin) is substituted, the speed of adaptation 

increases relative to the baseline. The effects of a larger var(wtmin) are very pronounced in this 

simulation. A larger var(wtmin) leads to less adaptation under climate change (relative to the no-

climate change scenario).  

2) Climate uncertainty has larger impacts in regions where the value of adaptation is high: 

Looking at the baseline outcomes under climate change, we see that the sample plots in 

Kentucky and Tennessee have the fastest rate of adaptation. By 2100, the probability of 

switching to pine forests increases from around 0% to 12.5% for these two plots whereas the 

sample plot in Virginia only sees an increase from about 0% to 5%. Once a low var(wtmin) is 

substituted, the probability of switching to pine forests increases substantially for the sample plot 

in Kentucky. We estimate that within 10 years (by the year 2030), the probability of this plot 

converting to pine will be just under 20% which is a 20 percentage point increase from the 

baseline scenario. By 2100, that probability increases to a whopping 59%. These probabilities for 

plots in Tennessee and Virginia are 32% and 24% respectively. These results illustrate the 

finding that uncertainty has less of an impact on adaptation decisions in places that are further 

from the adaptive margin. It is most relevant in areas that are already on the threshold of 

adaptation.  

3) Modeling climate uncertainty generates different adaptation paths than ignoring uncertainty 

Column B of Figure 4 shows the results of an additional simulation which uses the empirical 

planting model without var(wtmin) included as an independent variable, alongside the baseline 

results using the fully specified planting model that includes var(wtmin) in the set of independent 

variables. The simulation results are similar across the two models during the early years of the 

simulation, but the results diverge towards the end of the simulated time-period. This illustrates 

the importance of accounting for climate uncertainty in modeling irreversible adaptation 

decisions. While not including uncertainty in the empirical model may lead to some effects of 
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climate uncertainty being embedded in other parameter estimates, ignoring uncertainty can lead 

to quite different projections of the rate of adaptation.   

8.3. The effects of projected levels of climate uncertainty on adaptation 

A second goal of this simulation is to predict the adaptation paths of each of these plots given 

future projected var(wtmin). We first calculate the future yearly projections of var(tmin) from 

2020 to 2100 for each plot using three different climate models18. However, because these 

projections vary considerably across climate models and show no clear trend over time (Figure 

A1), using the time series of projections in the simulation is not informative in isolating 

particular changes in variance. Rather, we simulate the time-paths of adaptation under climate 

change using scenarios that fix the plot’s uncertainty at the minimum and maximum projected 

var(wtmin) under the MACA projections (Figure 4).  

The main takeaway from this approach is that adaptation paths are highly sensitive to the range 

of climate uncertainty in the MACA projections. These simulations produce a wide range of 

adaptation paths for each of the sample plots, which is due entirely to differences in var(wtmin). 

We estimate that by the year 2100, the probability of the sample plot in Kentucky switching to 

pine ranges from 24% to 55% across the two var(wtmin) scenarios, while the probability for the 

plots in Tennessee and Virginia range from 13% to 38% and -3% to 27% respectively. To 

illustrate the magnitude of this range of outcomes, take Kentucky, a state with one of the most 

diverse mix of hardwood species in the U.S. and where 88% (10.9 million acres) of its forests are 

privately owned (Brandeis et al. 2016). Given our simulation results, by 2100, between roughly 

2.6 and 6 million acres of hardwood forests could be converted to pine forests - that’s between 

10% and 22% of the state’s area. Therefore, there is significant uncertainty in the future 

composition of forestland that is driven by uncertainty in the eventual time path of daily 

variation in wintertime low temperatures. Given the fact that biodiversity is significantly lower in 

pine plantations relative to natural forests (Haskell et al. 2006), our results imply large 

uncertainties in conservation outcomes that are driven by economic uncertainties in adaptation 

behavior of forest landowners. 

 
18 the Canadian Fourth Generation Global Climate Model (CanESM2/CGCM4), the Community Climate System Model version 4 

(CCSM4), and the Hadley Centre Global Environment Model version 2 (Hadley) 
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9. Discussion  
Our results indicate that climate uncertainty slows adaptation and that proximity to the adaptive 

margin influences the magnitude of this effect. In an application to forest management in the 

eastern U.S., we find that the closer a landowner is to the adaptive margin, the more likely 

climate uncertainty impacts their planting and harvesting decisions. Whereas previous studies on 

climate adaptation in forestry have identified the effects of climate on these decisions and the 

economic benefits of adaptation, none have addressed how climate uncertainty affects the timing 

or any potential barriers to adaptation. This is a key piece of information for climate policy and 

conservation policy design. Because adaptation decisions are irreversible and future climate is 

uncertain, option value theory tells us that there would be an incentive to delay the decision to 

adapt to climate change by harvesting a plot of hardwood forest and converting it to a pine forest. 

This decision hinges on the fact that at the adaptive margin (in our case, states like Kentucky), 

landowners are faced with the fact that a warming climate increases the economic value of 

planting cold-sensitive pine species, and so converting their land to highly valuable pine forests 

becomes increasingly viable as the region warms. Under the assumption of costless adaptation, 

these landowners would be expected to convert their forests as soon as the returns to pine forests 

surpass that of hardwoods. While the payoff from converting to pine forests could be substantial, 

it is also uncertain whether or not planting a pine forest will be more profitable than the existing 

hardwood forests due to uncertainty in the occurrence of cold temperatures that can harm young 

pines. The combination of irreversibility with climate uncertainty is what gives rise to the 

incentive to delay the adaptation decision. 

The results in this paper have implications for the many external ecosystem service benefits 

provided by privately-owned forests, as well as for conservation policy. The distinction between 

the two replanting decisions (hardwoods or pines) is important in this context. Pine forests are 

heavily managed and commonly occur as plantations, whereas hardwood forests tend to be 

naturally regenerated with much less management and greater diversity of tree species. As such, 

landowners’ decisions to convert hardwood forests to pine plantations in response to a changing 

climate is a land-use change that could negatively affect biodiversity as well as alter the level of 

other forest ecosystem services (Paillet et al. 2010; Carnus et al. 2006; Haskell et al. 2006). Our 

results suggest a wide range of outcomes in the time-path of forest composition between pines 

and hardwoods that are driven by projected variation in daily wintertime low temperatures. Thus, 
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our results suggest that an important source of future conservation uncertainty arises from the 

economic response of private forest landowners to climate uncertainty in making adaptation 

decisions.  

Understanding the dynamics of how climate adaptation in forestry occurs is crucial for assessing 

the non-market damages arising from private adaptation to climate change, and for conservation 

planning. From the perspective of a conservation planner, knowing the timing of land-use change 

– such as conversions of hardwood forests to pine forests – greatly impacts the timing of optimal 

conservation decisions (Costello and Polasky 2004). In particular, conservation actions that 

conserve hardwood forests increase in urgency with an increased speed of private management 

decisions that adapt land use to pine plantations. Our results show that the speed of adaptive 

conversion between hardwoods and pine forests is highly sensitive to how uncertainty in 

wintertime low temperatures actually evolve, highlighting the importance of accounting for 

uncertainty when assessing the urgency of conservation actions.  

The literature has made clear that adaptation must be accounted for in climate change impact 

studies as adaptation affects the net damages from climate change (Auffhammer 2018; Guo and 

Costello 2013). Generally, studies have found that adaptation induced by private incentives 

reduces the damages to climate change, but adaptation decisions can have environmental 

consequences and produce social costs (Fezzi et al.). In the context of forestry, privately-optimal 

adaptation decisions generate externalities due to the wide range of public benefits that forests 

provide and that are not internalized by private landowners (Hashida et al. 2020). While this is 

beyond the scope of our paper to quantify, our results indicate that while climate uncertainty 

affects the private benefits from adaptation, there are potentially many social cost implications 

arising from these adaptive behaviors.  

There are numerous other climate adaptations where we would expect an option value to exist - 

situations where the decision to adapt is irreversible and potentially affected by climate 

uncertainty. These decisions can include coastal armament and managed retreat in response to 

sea level rise, investments in various forms of infrastructure, and agricultural decisions that 

require land-use or systems changes to name a few. These are all adaptation decisions that may 

have an option value that incentivizes decisionmakers to delay adaptation. Depending on the 

context, this behavior could have detrimental effects if the adaptation were one that results in 
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reduced climate change damages. Some of these adaptation decisions are mostly private (e.g. 

agricultural management); other adaptation decisions are public decisions made by governments, 

like beach nourishment (Gopalakrishnan et al. 2018); and others are private decisions that 

generate externalities, like private shoreline armoring (Dundas and Lewis 2020). Our paper 

models the private adaptation decisions of landowners and shows how option values can affect 

these decisions. That climate uncertainty can slow adaptation is consistent with prior analyses of 

real options theory (Mezey and Conrad 2010), and future work should explore the implications 

of this finding in settings where the adaptation decision being made is not a private one.  

There are several limitations to our analysis that are worth mentioning. First, our simulation does 

not account for any future changes in timber prices that may arise from supply shifts in the 

timber market. While this does not negate the fact that we are able to isolate and illustrate the 

effect of var(wtmin) under future climate, which is the goal of this paper, future work could 

include simulations of future timber prices and provide a clearer picture of other important 

drivers of these adaptation decisions. Second, our model assumes that landowners make 

management decisions in response to the current climate they face rather than the future climate 

they expect, and thus our simulation should be viewed as representing how landowners react to 

climate change that occurs rather than anticipating how it will evolve. While one recent study has 

attempted to test whether farmland prices anticipate future climate change (Severen et al. 2018), 

there is no evidence yet on how timberland owners use forecasts of climate change in their 

management decisions. Future work that tests how climate forecasts affect timber management 

would be a fruitful extension of this work. 
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Appendix 
Table A1: Planting model choice group definitions 

Planting Model Choice Group Assignments 

Forest Group Name 

Proportion Artificially 

Regenerated 

Choice group 

assignment 

White / red / jack pine group 66.7% Managed Pine 

Longleaf / slash pine group 86.5% Managed Pine 

Loblolly / shortleaf pine group 79.8% Managed Pine 

Other softwoods group19 16.7% Natural Hardwood 

Oak / pine group 60.8% Managed Pine 

Oak / hickory group 22.4% Natural Hardwood 

Oak / gum / cypress group 21.6% Natural Hardwood 

Elm / ash / cottonwood group 20.3% Natural Hardwood 

Maple / beech / birch group 0.0% Natural Hardwood 

Other hardwoods group20 17.2% Natural Hardwood 

 

Table A2: List of data used and sources 

Data used in estimation 

Variable Description Units Source 

Clear Cut 1 if clear-cut; 0 if not binary FIA 

Disturbed 

1 if plot is disturbed and experienced negative growth; 0 

if not binary FIA 

mgd_pine 1 if a managed pine species is planted; 0 if not binary FIA 

hardwood 1 if a hardwood species is planted; 0 if not binary FIA 

site class 

Measure of a plot’s quality on a scale from 1 (highest 

quality) to 7 (lowest quality) categorical FIA 

Elevation Elevation ft FIA 

Private 1 if land is privately owned; 0 if not binary FIA 

State dummy  Binary variables indicating the plot's state binary FIA 

Stand volume 

Per acre volume calculated by multiplying the plot's 

measured trees by their trees/acre expansion factor 

(TPA) and summed for the plot MBF/acre FIA 

 
19 The ‘Other softwoods’ classification includes the following forest groups: Spruce-Fir, other eastern softwoods, Pinyon-Juniper, 

and exotic softwoods. 
20 The ‘Other hardwoods’ classification includes the following forest groups: Aspen-Birch, other hardwoods, tropical hardwoods, 

and exotic hardwoods. 
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Stand growth 

Per acre volume growth calculated by multiplying each 

tree's recorded annual growth by their TPA and summed 

for the plot 

MBF/acre/ 

year FIA 

Clear Cut Revenue Timber price multiplied by stand volume $/acre 

FIA, Mihiar and 

Lewis 2021 

No-cut benefit Timber price multiplied by stand growth $/acre 

FIA, Mihiar and 

Lewis 2021 

Net Returns Annualized net returns per acre $/acre/year 

Mihiar and Lewis 

2021 

Wtmax  Average maximum daily temperature  Dec.-Feb.  

Degrees 

Celcius PRISM 

Annual precip Mean annual precipitation mm PRISM 

Var(wtmin) 

Variance in minimum daily temperature Dec.-Feb. of the 

previous 20 years  PRISM 

Mean(temp) Mean daily temperature Mar.-Nov.  

Degrees 

Celcius PRISM 

ngprecip Average total precip from Dec.-Feb. mm PRISM 

    
Data used in simulation 

Projected wtmax Average maximum daily temperature  Dec.-Feb.  

Degrees 

Celcius MACA 

Projected annual 

precip Mean annual precipitation mm MACA 

Projected 

mean(temp) Mean daily temperature Mar.-Nov.  

Degrees 

Celcius MACA 

Projected ngprecip Average total precip from Dec.-Feb. mm MACA 

Stand growth 

Per acre volume growth calculated by multiplying each 

tree's recorded annual growth by their TPA and summed 

for the plot 

MBF/acre/ 

year FIA 

Acronyms found in the Units and Source column are as follows: Forest Inventory and Analysis (FIA), Parameter-

elevation Regressions on Independent Slopes Model (PRISM), and Multivariate Adaptive Constructed Analogs 

(MACA) 
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Table A3: Forest composition across states 

 
Choice Group: Pine 

State 

White, Red, 

Jack Pine 

Longleaf, 

Slash Pine 

Loblolly, 

Shortleaf Pine 

Oak, 

Pine 

AL 0.0% 4.9% 35.6% 12.9% 

AR 0.0% 0.0% 30.5% 10.6% 

GA 0.2% 13.8% 29.9% 10.9% 

KY 0.4% 0.0% 1.7% 4.6% 

LA 0.0% 5.1% 37.3% 8.4% 

MS 0.0% 4.4% 38.7% 10.4% 

NC 0.8% 1.6% 29.1% 13.0% 

SC 0.2% 3.4% 41.2% 12.3% 

TN 0.7% 0.0% 7.7% 7.7% 

VA 1.3% 0.0% 20.3% 10.3% 

Whole Sample 0.4% 3.7% 27.3% 10.6% 

 

 
Choice Group: Hardwood 

State 

Other 

Softwoods21 

Oak, 

Hickory 

Oak, Gum, 

Cypress 

Elm, Ash, 

Cottonwood 

Maple, Beech, 

Birch 

Other 

Hardwoods22 

AL 0.3% 32.4% 9.8% 2.9% 0.0% 0.2% 

AR 1.8% 41.6% 9.9% 4.9% 0.0% 0.2% 

GA 0.0% 27.6% 14.1% 2.1% 0.0% 0.3% 

KY 2.1% 74.5% 1.0% 6.3% 8.3% 0.6% 

LA 0.0% 12.7% 24.7% 9.0% 0.0% 1.8% 

MS 0.4% 26.2% 12.4% 6.1% 0.0% 0.5% 

NC 0.2% 40.6% 9.5% 3.0% 0.4% 0.9% 

SC 0.2% 23.8% 14.9% 3.2% 0.0% 0.2% 

TN 2.0% 70.7% 2.4% 5.6% 2.2% 0.6% 

VA 0.6% 58.9% 2.6% 3.1% 2.0% 0.5% 

Whole 

Sample 0.7% 41.5% 9.4% 4.0% 1.1% 0.5% 

 

 
21 The ‘Other softwoods’ classification includes the following forest groups: Spruce-Fir, other eastern softwoods, Pinyon-Juniper, 

and exotic softwoods. 
22 The ‘Other hardwoods’ classification includes the following forest groups: Aspen-Birch, other hardwoods, tropical hardwoods, 

and exotic hardwoods. 
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Table A4: summary stats of selected variables by forest type 

 
Forest type 

𝒘𝒕𝒎𝒂𝒙̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(°C) 

𝒕𝒎𝒆𝒂𝒏̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

(°C) 

𝒏𝒈𝒑𝒓𝒆𝒄𝒊𝒑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(mm) 

𝒑𝒓𝒆𝒄𝒊𝒑̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(mm) var(wtmin) 

Net Returns to 

Pines 

Net Returns to 

Hardwoods 

M
a

n
a

g
ed

 P
in

es
 

"White / red / jack pine group" 8.36 12.6 321.1 1306 30.3 $     14.00 $       6.70 

"Longleaf / slash pine group" 16.6 18.8 327.4 1335 31.5 $     21.40 $       10.90 

"Loblolly / shortleaf pine group" 13.6 16.9 332.0 1306 30.1 $     24.00 $       9.94 

"Oak / pine group" 12.7 16.2 326.3 1298.5 30.3 $     22.70 $       9.44 

"Other softwoods group" 9.65 14.50 307.5 1247.55 33.75 $     20.80 $       8.05 

Group Total 13.6 16.9 330.1 1306.6 30.3 $    23.44 $       9.90 

 “Oak / hickory group” 10.5 14.8 321.7 1284.2 31.5 $     22.10 $       8.45 

H
a

rd
w

o
o

d
s 

"Oak / gum / cypress group" 14.6 17.7 330.2 1318.9 30.3 $     25.60 $       10.90 

"Elm / ash / cottonwood group" 11.9 16.1 331.9 1294.4 31.3 $     27.40 $       10.50 

"Maple / beech / birch group" 7.5 12.7 309.0 1257.3 35.2 $     18.30 $       6.61 

"Other hardwoods group" 11.3 15.0 346.6 1384.0 31.1 $      21.30 $       9.22 

Group Total 11.2 15.3 323.6 1290.7 31.4 $     22.89 $       8.97 
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Table A5: Summary stats by state 

State Var(wtmin) 

𝒕𝒎𝒆𝒂𝒏̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

(°C) 

𝒘𝒕𝒎𝒂𝒙̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(°C) 𝒑𝒓𝒆𝒄𝒊𝒑̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (mm) 

Net Returns ($/acre) 

% Pines Site Class Hardwoods Pines Pine-hw 

AL 34.70 17.34 14.33 1427.39  $     10.50  $   28.18  17.68 53% 4.83 

AR 30.74 16.03 11.32 1320.41  $     6.93   $   29.26  22.33 41% 5.01 

GA 29.14 17.69 15.14 1256.74  $     10.78   $   23.15  12.37 55% 4.28 

KY 36.90 13.19 7.61 1211.27  $     6.39  $   19.13  12.74 6% 4.99 

LA 32.70 18.84 15.83 1491.26  $     13.58   $   28.76  15.18 51% 4.06 

MS 35.09 17.72 14.43 1477.72  $     13.84   $   26.98  13.14 53% 4.09 

NC 25.92 15.05 11.48 1253.44  $     9.39   $   16.53  7.14 44% 4.70 

SC 26.60 17.16 14.25 1195.77  $     9.08   $   20.51  11.42 57% 4.41 

TN 34.75 14.21 9.42 1363.47  $     11.75   $   29.33  17.58 15% 4.80 

VA 26.83 13.11 8.52 1129.59  $     4.86   $   12.34 7.48 31% 4.90 
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Table A6: Parameter Estimates of Nested Logit Model 

Planting pine post-clear cut 

 (1) (2) 

Constant 2.80 
 

-2.40 *** 

 
(1.81) 

 
(0.57)  

𝑤𝑡𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅ -2.78 * 0.81 * 

 
(1.29) 

 
(0.32)  

𝑃𝑟𝑒𝑐𝑖𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅ 2.88 *** 1.34 *** 

 
(0.47) 

 
(0.30)  

Net Returns 0.79 * -0.09  

 
(0.36) 

 
(0.30)  

Net Returns*𝑤𝑡𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅ -0.49 
 

0.08  

 
(0.27) 

 
(0.23)  

Site Class -0.17 *** -0.14 ** 

 
(0.05) 

 
(0.04)  

Var(wtmin) -2.73 ***   

 
(0.60) 

 
  

Var(wtmin)*𝑤𝑡𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅ 1.43 **   

 
(0.45) 

 
  

Observations: 3,131 plots that were clear cut   

   
  

 

Natural Disturbance if not clear cut  

(on server excel file "results all3 models" disturbance sheet 

date 8/11") 

Constant -4.75 ***   

 
(1.17) 

 
  

Elevation 0.27 *   

 
(0.12) 

 
  

Private land dummy -0.95 ***   

 
(0.10) 
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𝑤𝑡𝑚𝑒𝑎𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 8.97 
 

  

 
(6.12) 

 
  

𝑛𝑔𝑝𝑟𝑒𝑐𝑖𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  -2.17 
 

  

 
(1.15) 

 
  

AR dummy§ -0.03 
 

  

 
(0.20) 

 
  

GA dummy -0.01 
 

  

 
(0.18) 

 
  

KY dummy -0.27 
 

  

 
(0.31) 

 
  

LA dummy 0.47 *   

 
(0.24) 

 
  

MS dummy -1.05 **   

 
(0.34) 

 
  

NC dummy 0.06 
 

  

 
(0.23) 

 
  

SC dummy -1.00 ***   

 
(0.26) 

 
  

TN dummy -0.17 
 

  

 
(0.24) 

 
  

VA dummy -0.02 
 

  

 
(0.32) 

 
  

Observations: 58,409  
 

  

§ Alabama is the omitted state 
 

  

   
  

 

Harvest (clear-cut = 1, no clear-cut = 0) 

(results on server in planting results 7-14 excel file, harvest 

sheet) 

Clear cut constant -1.644 *** -4.35 *** 

 
(0.067) 

 
(0.07)  

Clear cut revenue 0.097 *** 0.05 *** 
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(0.008) 

 
(0.01)  

No cut benefit waiting -4.095 *** 2.16 *** 

 
(0.297) 

 
(0.09)  

No cut benefit waiting^2 4.467 *** -4.26 *** 

 
(0.528) 

 
(0.30)  

Planting IV -0.595 *** 4.62 *** 

 
(0.023) 

 
(0.53)  

Disturbance IV 34.048 *** 33.80 *** 

 
(4.415) 

 
(4.29)  

Observations: 61,540  
  

  

     

***0.10%     

**1%     

*5%     

 

Table A7 Estimated Partial Effects 

𝒘𝒕𝒎𝒂𝒙̅̅ ̅̅ ̅̅ ̅̅ ̅̅  up by 2°C 

 
Planting Pines Natural Disturbance Clear Cut 

State Avg. ME Std. Error Avg. ME Std. Error Avg. ME Std. Error 

AL 0.0655*** 0.0123 0.0016 0.0012 0.0104*** 0.0026 

AR 0.0254 0.0157 0.0019 0.0014 0.0029 0.0018 

GA 0.0390*** 0.0097 0.0020 0.0015 0.0058** 0.0018 

KY 0.0380*** 0.0050 0.0013 0.0010 0.0016*** 0.0003 

LA 0.0525*** 0.0085 0.0028 0.0021 0.0179*** 0.0043 

MS 0.0780*** 0.0125 0.0006 0.0005 0.0166*** 0.0034 

NC 0.0286* 0.0133 0.0021 0.0016 0.0036* 0.0017 

SC 0.0231 0.0126 0.0008 0.0006 0.0031 0.0018 

TN 0.0557*** 0.0089 0.0015 0.0011 0.0045*** 0.0007 

VA 0.0283** 0.0092 0.0019 0.0014 0.0020*** 0.0006 

Whole Sample  0.0469*** 0.0087 0.0015 0.0011 0.0052*** 0.0010 



Page 50 of 51 

 

𝒑𝒓𝒆𝒄𝒊𝒑̅̅ ̅̅ ̅̅ ̅̅ ̅̅  up by 80mm 

 
Planting Pines Natural Disturbance Clear Cut 

State Avg. ME Std. Error Avg. ME Std. Error Avg. ME Std. Error 

AL 0.0574*** 0.0093 -0.00034 0.00019 0.0089*** 0.0018 

AR 0.0568*** 0.0093 -0.00040 0.00021 0.0071*** 0.0015 

GA 0.0574*** 0.0093 -0.00042 0.00023 0.0088*** 0.0017 

KY 0.0224*** 0.0049 -0.00027 0.00015 0.0010*** 0.0003 

LA 0.0524*** 0.0075 -0.00057 0.00033 0.0180*** 0.0046 

MS 0.0567*** 0.0089 -0.00012 0.00007 0.0115*** 0.0026 

NC 0.0571*** 0.0094 -0.00044 0.00024 0.0077*** 0.0018 

SC 0.0573*** 0.0093 -0.00016 0.00009 0.0079*** 0.0016 

TN 0.0483*** 0.0085 -0.00030 0.00016 0.0040*** 0.0009 

VA 0.0485*** 0.0076 -0.00040 0.00022 0.0036*** 0.0007 

Whole Sample  0.0560*** 0.0092 -0.00032 0.00017 0.0063*** 0.0012 

var(wtmin) increase by 2 standard deviations (9)  

 
Planting Pines Natural Disturbance Clear Cut 

State Avg. ME Std. Error Avg. ME Std. Error Avg. ME Std. Error 

AL -0.1433*** 0.0323 0.0000 0.0000 -0.0146*** 0.0026 

AR -0.2084*** 0.0272 0.0000 0.0000 -0.0162*** 0.0023 

GA -0.1206** 0.0381 0.0000 0.0000 -0.0126*** 0.0036 

KY -0.0731*** 0.0103 0.0000 0.0000 -0.0028*** 0.0005 

LA -0.1019* 0.0452 0.0000 0.0000 -0.0221* 0.0091 

MS -0.1458*** 0.0356 0.0000 0.0000 -0.0185*** 0.0037 

NC -0.2096*** 0.0284 0.0000 0.0000 -0.0174*** 0.0026 

SC -0.1428*** 0.0325 0.0000 0.0000 -0.0134*** 0.0029 

TN -0.1749*** 0.0149 0.0000 0.0000 -0.0102*** 0.0012 

VA -0.1878*** 0.0256 0.0000 0.0000 -0.0097*** 0.0017 

Whole Sample  -0.1800***  0.0224 0.0000  0.0000 -0.0134*** 0.0014 

Significance level: ***0.10%,  **1%,  *5% 
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Figure A1. Projected variance of wintertime low temperatures across three climate models 

and an aggregate of the three for sample plots in Tennessee, Kentucky, and Virginia 

 


