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Management and environmental factors associated
with simulated restoration seeding barriers in
sagebrush steppe
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Adverse weather conditions, particularly freezing or drought, are often associated with poor seedling establishment following
restoration seeding in drylands like the Great Basin sagebrush steppe (U.S.A.). Management decisions such as planting date
or seed source could improve restoration outcomes by reducing seedling exposure to weather barriers. We simulated
the effects of management and environmental factors on seedling exposure to post-germination barriers for bottlebrush
squirreltail (Elymus elymoides), Sandberg bluegrass (Poa secunda), and bluebunch wheatgrass (Pseudoroegneria spicata).
We combined germination timing models with daily soil moisture and temperature estimates to calculate yearly germination
favorability and post-germination freezing and drought barriers for three planting dates (15 October, 15 November, and
15 March) and three seed sources or cultivars per species for 5,000 sites in each of 40 years (water years 1980-2019).
We tested the effects of site environmental variables (elevation, mean annual precipitation, heat load, and clay content)
and management choices (seed source and planting date) on germination favorability and barrier occurrence (mean)
and variability (coefficient of variation). Seedling exposure to barriers was strongly linked to management decisions in
addition to site mean precipitation and elevation. Later fall plantings and seed sources with slower germination (lower mean
germination favorability) were less likely to encounter freezing and drought barriers. These results suggest that management
actions can play a role comparable to site environmental variables in reducing exposure of vulnerable seedlings to adverse
weather conditions and subsequent effects on restoration outcomes.
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western United States (Svejcar et al. 2017; Mahood & Balch 2019).
Successful establishment of perennial grasses is particularly
important in this system due to their ability to compete with

Implications for Practice

e Dryland restoration seeding success is affected by weather

impacts on seedling survival, but the general impacts are hard
to quantify with limited sites and/or years in experiments and
observational studies. However, a simulation approach can
describe the range of seedling mortality patterns associated
with management decisions, macroclimate, and soils.

e Our results suggest that the effects of management deci-
sions, like seed sources and planting date, on Great Basin
seeding outcomes are comparable to the effects of site abi-
otic variables, because these decisions affect germination
timing relative to seedling exposure to adverse weather.

e ASI Jointly considering germination behavior, seeding
timing, and other management decisions on weather-
induced seedling mortality could reduce variability and

enhance success in dryland restoration seedings.

Introduction

Post-fire seeding is a primary restoration method for preventing
conversion of native-dominated perennial shrub steppe to non-
native annual grassland in the Great Basin, a cold desert in the

invasive annual grasses (Davies et al. 2012; Bansal &
Sheley 2016). However, poor outcomes with restoration seed-
ing in the region are common (Knutson et al. 2014; Shriver
et al. 2019) and are associated with variable and adverse
weather conditions, such as extreme dry or cold periods that

Author contributions: SMC, JBB, SPH, DRS, KJB designed the study; SPH provided
germination models; DRS, JBB simulated soil microclimate conditions; SMC, KJB
simulated and analyzed germination outcomes; SMC, JBB, SPH, DRS, KJB

wrote the paper. SMC, KJB contributed equally to this study.

"USDA —Agricultural Research Service, Eastern Oregon Agricultural Research Center,
67826-A Highway 205, Burns, OR 97720, U.S.A.

2Address correspondence to S. M. Copeland, email stella.copeland @usda.gov

us Geological Survey, Southwest Biological Science Center, 2255 N. Gemini Dr.,
Flagstaff, AZ 86001, U.S.A.

4USDA—Agricultural Research Service, Northwest Watershed Research Center, 251
Front Street, Suite 400, Boise, ID 83702, U.S.A.

SCenter for Adaptable Western Landscapes, Northern Arizona University, PO Box
6077, Flagstaff, AZ 86011, U.S.A.

SThe Nature Conservancy, 1 East First Street, Suite 1007, Reno, NV 89501, U.S.A.

© 2022 Society for Ecological Restoration. This article has been contributed to by U.S.
Government employees and their work is in the public domain in the USA.

doi: 10.1111/rec.13722

Supporting information at:
http://onlinelibrary.wiley.com/doi/10.1111/rec.13722/suppinfo

Restoration Ecology

10f12

1056


https://orcid.org/0000-0001-6707-4803
https://orcid.org/0000-0001-9973-2065
mailto:stella.copeland@usda.gov

Variation in restoration seeding barriers

affect small seedlings post-germination but prior to seedling
emergence (James et al. 2011; James et al. 2019; Larson
et al. 2021). The prevalence and variability of weather-related
barriers to seedling establishment are not well characterized in
the Great Basin, despite their likely influence on long-term restora-
tion outcomes (Bradford et al. 2018; Hagger et al. 2018; Hardegree
et al. 2018a). Describing the distribution of restoration barriers
across space and time is a key step in selecting, developing, and
improving restoration practices at large spatial scales (Madsen
et al. 2016; Havrilla et al. 2020; Shaw et al. 2020).

High spatiotemporal variability in environmental conditions and
associated restoration outcomes is typical of the Great Basin and sim-
ilar dryland regions. Weather during the early establishment phase is
strongly linked to long-term restoration outcomes in many systems
(Copeland et al. 2019; Groves et al. 2020; Werner et al. 2020). In
the Great Basin, dry or freezing conditions in upper soil layers can
cause high mortality for seedlings between germination and emer-
gence (Boyd & Lemos 2013; Gornish et al. 2015; James
etal. 2019). However, the effects of weather conditions on mortality
can be highly complex, dynamic, and sensitive to the length and
severity of dry or freezing periods (Boyd & Lemos 2013; Roundy &
Madsen 2016; Pyle et al. 2021). In contrast to weather, the general
macroclimate and the effects of the site environment have a more
consistent influence on restoration outcomes. For example, restora-
tion success varies with elevation (Knutson et al. 2014; Germino
et al. 2018), topography (e.g. slope and aspect, Boehm et al. 2021),
and soil properties (Barnard et al. 2019; Davidson et al. 2019).

Restoration outcomes are also strongly influenced by management
decisions in addition to weather and site environmental variables. For
example, seeding methods and timing (Shaw et al. 2020) can deter-
mine whether or not seedlings encounter adverse or favorable
weather conditions during vulnerable early life stages (Boyd &
James 2013; Boyd & Lemos 2015; Hardegree et al. 2020). The selec-
tion of species as well as seed source or cultivar within species
(Larson et al. 2015; Baughman et al. 2019; Leger et al. 2019) is
another key management decision that can influence restoration out-
comes across environmental conditions. In particular, seed sources
vary in performance traits such as germination response, growth rate,
and drought or freezing tolerance (Baughman et al. 2019; Leger
et al. 2019) and these differences can alter the impact of exposure to
post-seeding establishment barriers.

Describing the risk of seedling exposure to adverse weather
and associated restoration barriers as a function of historical
weather variability across the Great Basin could suggest better
practices for increasing restoration success in particular sites.
However, little is known regarding the variability of restoration
barriers across this region and their sensitivity to major manage-
ment decisions regarding planting date, species, and source
population or cultivar. For instance, slower germinating seed
sources or later fall or winter planting dates could decrease
exposure of small seedlings to freezing, and potential mortality,
associated with fluctuating temperature and moisture conditions
in the fall and early winter (Hardegree et al. 2020). Annual and
seasonal variability in restoration barriers are also poorly
described relative to spatial variation in abiotic factors like soils
and microclimate. Here, we address this gap by simulating the
spatiotemporal variability in germination favorability, an index

based on the accumulation of favorable seedbed conditions for
germination, and characterizing freezing and drought barriers
that occur during the vulnerable post-germination period. We
examine the potential for altering this variability with manage-
ment choices of planting date, species, and cultivars within a
species to improve restoration outcomes. Finally, we describe
the effects of average precipitation, elevation, soil texture, topo-
graphic heat load, and clay content on exposure and variability
of potential restoration outcomes.

Methods

Locations

We randomly selected 5,000 locations per species within the
Great Basin to predict germination rates with the following steps
(Fig. 1). First, we identified the potential range for each species
at a 500-m scale based on distribution models (Barga et al.
unpublished data, methods in Barga et al. 2018). We defined
presence locations (binary) from continuous predictions of
occurrence probability maps using a threshold appropriate for
distribution models based on presence-only data, the maximum
sum of sensitivity and specificity (Max SSS, Liu et al. 2013; Liu
et al. 2015). We constrained our sampling to the Great Basin
region based on the Columbia Plateau, Snake River Plain, West-
ern and Eastern Great Basin zones from LANDFIRE as well as
shrubland and grassland potential vegetation types, to avoid
riparian, woodland, urbanized, or cultivated agriculture areas
(30 m resolution, LANDFIRE Environmental Site Potential
layer, version 1.4.0, Wildland Fire Science 2016). We chose the
LANDFIRE data as they have complete coverage across our large
area. Selected locations were mostly in Inter-Mountain Basins
Big Sagebrush Shrubland or Sagebrush Steppe vegetation types
(Wildland Fire Science 2016). We also limited areas for point
selection to less than 2,500 m in altitude, to avoid including high
elevation areas (mountain tops) with distinct environmental char-
acteristics and higher resilience to disturbance than lower eleva-
tion sagebrush steppe (Chambers et al. 2014). To match site
locations with input weather data used in subsequent soil micro-
climate modeling, we randomly selected centroids from the
weather data cells (1/24° resolution, gridMET, Abatzoglou 2013)
within our previously screened areas.

Soil Moisture and Temperature

We simulated daily soil moisture and temperature at 0—2 and
2-5 cm depths with SOILWAT?2, an ecosystem water balance
model, at each of the 15,000 study locations. SOILWAT?2 is a
process-based daily simulation model that represents the soil pro-
file with multiple layers and includes surface cover and topography
(R package rSOILWAT2 v4.0.0, Schlaepfer & Andrews 2019;
Schlaepfer & Murphy 2019). The model represents evaporative
demand with processes across soil layers including temperature,
percolation and hydraulic redistribution, evaporation, transpiration,
deep drainage, and snow dynamics (further details, Supplement
S1). We used SOILWAT? simulations to represent conditions at
each study location following restoration seeding in bare soil.
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Figure 1. The density of sites (5,000 per species) per 1,600 km? (400 km grid) for each of the three species: (A) Pseudoroegneria spicata, (B) Poa secunda, and
(C) Elymus elymoides. Outlined areas show the ecoregions that constrained the randomized points.

Simulations were based on bulk density and soil texture at 0-5, 5—
15, 15-30, 30-60, 60-100, and 100-200 cm depths (30 m,
POLARIS, Chaney et al. 2019) and daily precipitation and mini-
mum and maximum air temperature (approximately 4 km, 1/24°
resolution, gridMET, 1979-2019, Abatzoglou 2013). Soil proper-
ties at 2-5 and 5-10 cm depths were linearly interpolated from
the above soil depth categories prior to simulation runs.

Species and Seed Sources

We simulated germination response of three native perennial
bunchgrasses commonly seeded in large-scale restoration projects
for this study: bluebunch wheatgrass, Pseudoroegneria spicata
(Pursh) A. Love, hereafter, “PSSP”; Sandberg bluegrass, Poa
secunda J. Presl, hereafter, “POSE”; and bottlebrush squirreltail,
Elymus elymoides (Raf.) Swezey, hereafter “ELEL”. We used
both cultivars and wild-collected sources with previously docu-
mented hydrothermal germination responses (see Supplement
S2 for details, Hardegree et al. 2003; Jones et al. 2003; Hardegree
et al. 2008; Hardegree et al. 2010; Larson et al. 2015; Larson
et al. 2016). Cultivars and/or source populations were, for PSSP:
“Anatone,” “T1561,” and “Whitmar”; for POSE: “Mountain
Home,” “Opportunity,” and “Sherman”; and for ELEL: “Ante-
lope Creek,” “Fish Creek,” and “Rattlesnake” (Supplement S2).

Wet-Thermal Germination Models

We predicted germination rates and timing using daily estimates
of soil temperature and water potential and previously devel-
oped wet-thermal germination-response models (Hardegree
et al. 2008; Hardegree et al. 2010; Larson et al. 2015; Larson
et al. 2016; Hardegree et al. 2018b). Germination response to
constant temperature was evaluated in programmable environ-
mental chambers (described in Hardegree & Burgess 1995).
Thirty-five seeds of each seedlot were germinated on cellulose
dialysis membranes in germination cells (described in

Hardegree & Emmerich 1992). The cellulose membranes sepa-
rated the seeds from an osmotic solution of polyethylene glycol
(8000) with a concentration determined to yield a water potential
of —0.033 MPa (Hardegree & Emmerich 1990). Germination
was defined as radicle extension of 22 mm. Germination evalua-
tion occurred in the same germination environment, but the proce-
dure varied slightly among seed source and species. Species/
sources were evaluated with two replicate vials in each of three
replicated thermal environments at 8, 12, and 18°C (Larson
et al. 2015; Larson et al. 2016), except for the PSSP “Whitmar”
cultivar (Hardegree et al. 2010), which was evaluated for three
or four germination vials of each seedlot replicated in three differ-
ent thermal chambers at 3° increments between 3 and 21°C.
Germination response models typically divide each seed popu-
lation into subpopulations based on relative germination rate
(Covell et al. 1986). The 25% subpopulation characterizes poten-
tial germination response of the more robust and faster-
germinating seeds, whereas 50% is typically used to characterize
median population response (Hardegree et al. 2013). Approxi-
mately 95% of the variation in the germination response of these
species can be described by linear thermal response between base
temperature and optimal temperature for germination, when
above a threshold water potential of —1.5 MPa (Hardegree
et al. 2017; Hardegree et al. 2018b). As such, germination rate
was estimated to be zero below the base temperature (where ger-
mination rate = 0), below a water potential of —1.5 MPa, and for
soil temperatures above 22.5°C (at 2-5 cm depth). Germination
rate estimates from the linear models for each day after planting
and before 1 June were added together to calculate cumulative
rate sum, hereafter, “rate sum,” which represents daily progress
toward germination (rate sum = 1) for that given subpopulation
(based on relative germination rate) of seeds. For example, when
the rate sum for the 25% subpopulation is estimated to equal 1, it
means that the fastest 25% of the seed cohort will have germi-
nated. The day on which germination was expected to occur is
when the rate sum = 1 (Roundy & Biedenbender 1996). A rate
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sum greater than 1 does not have direct biological meaning, as this
would only occur after this subpopulation of seeds have germi-
nated. However, rate sum values greater than 1 can be considered
a general index of seedbed favorability for germination during
any given time period (Hardegree et al. 2003; Hardegree
et al. 2013; Hardegree et al. 2020).

Germination and Potential Restoration Barriers

Soil moisture and temperature predictions were combined with
germination models to predict germination favorability and
potential post-germination restoration freezing and drought bar-
riers separately for each site, species cultivar or source, and
planting date (15 October, 15 November, 15 March) for each
year (planting date—1 June) from 1979 to 2019. We estimated
potential restoration barriers with timing from germination
models for the 50% subpopulations (the median response, as
opposed to the faster 25% subpopulations used for the rate
sum calculation) for each species and source to target barriers
most likely to impact a large proportion of germinating seeds.
Barrier occurrence was evaluated after each discrete period
where germination was predicted (rate sum = 1) within the same
water year (planting date through 1 June). This allowed for mul-
tiple periods of simulated germination and subsequent barriers
within each water year for a given planting date. Freezing bar-
riers were defined as periods of 21 day with either less than
0°C or less than —5°C soil temperatures at 2-5 cm depth for
mild and severe categories, respectively. Drought barriers were
defined as periods of >7 days at less than —1.5 MPa soil water
potential at 2-5 or 5-10 cm depths for mild and severe catego-
ries, respectively (see example in Fig. S1).

These freezing and drought barrier definitions are only rep-
resentations of potential mortality conditions, as little informa-
tion is available on the exact temperature and moisture
values related to seedling mortality for these species and seed
sources. However, one experiment showed that freezing
periods of 2 days strongly decreased emergence of recently
germinated PSSP, whereas older seedlings were more resistant
to freezing stress (Boyd & Lemos 2013). Another study with
PSSP showed that 4-day dry periods strongly limited recruit-
ment in field conditions (Pyle et al. 2021). Our drought barriers
assume that a prolonged period of less than —1.5 MPa (wilting
point) could lead to substantial mortality due to shallow root-
ing depths of young seedlings, as opposed to a pattern of grad-
ual drying; however, the simulation does not account for the
potential for older seedlings to resist drought with root depths
into deeper soil layers (Hanslin et al. 2019).

We estimated how species and seed source affected the rela-
tive risk of encountering barriers, for the same plant date and
site, with standardized anomalies. Standardized anomalies
describe extremes relative to average conditions and their vari-
ability, in this calculation, the risk of encountering a barrier.
Standardized anomalies were calculated by site, plant date, and
germination barrier: year value for barrier — long-term
(40-year) barrier mean/standard deviation (40 years) of barrier.
Higher relative risk for encountering a particular barrier was
defined as the proportion of years with standardized

anomalies greater than 1 and low risk as the proportion of years
with standardized anomalies less than —1.

Site Environmental Variables

We gathered elevation, solar radiation (heat load), precipitation,
and soils data for each location to describe site environmental
conditions. Elevation was based on a 30-m DEM (Digital Eleva-
tion Model, LANDFIRE 2020). We calculated topographic
microclimate with heat load index (HLI), an estimate of solar
radiation as a function of latitude, slope, aspect, and landscape
position (“hli” function, R package spatialEco, McCune 2007;
Evans 2020). We used the 30-year average annual precipitation
to approximate the precipitation regime for each site (1981-
2010, 800-m resolution, PRISM 2020). We described site
near-surface soil texture with percent clay in the 0-5 cm soil
layer (30-m resolution, POLARIS, Chaney et al. 2019).

Analysis

For each site, plant date, species, and seed source (cultivars or col-
lections), we calculated mean and CV (coefficient of variation) in
germination favorability (rate sum), number of freezing barriers,
and number of drought barriers. For each site, we also quantified
five environmental variables: elevation, HLI, clay content, and
30-year average annual precipitation as well an interaction term
between elevation and 30-year average annual precipitation. We
assessed the relationship between environmental variables and
mean and variability (CV) in germination favorability (rate
sum) and barrier occurrence with a Bayesian estimation approach
using generalized linear models (R package “rstanarm,” Goodrich
et al. 2020). We checked environmental variables for collinearity
prior to constructing models (Table S1). Because we were primar-
ily interested in the general direction of the effects of the vari-
ables, as well as a similar suite of variables across all the
models, we developed the full model and did not attempt to fit
the best model among the variables (Tables S2 & S3; for model
fit see Figs. S2-S4). Mean and CV across sites were regressed
against environmental variables. In addition, we included source
population and planting date as categorical, independent vari-
ables. As part of the rstanarm model fitting, all variables are inter-
nally centered prior to coefficient estimation but the posterior
mean estimates are unscaled (Goodrich et al. 2020). For each
model run, we specified a Gaussian distribution. We used four
Markov chain Monte Carlo chains, each with 2,000 iterations,
with the first 1,000 as the warmup period and used the default
weakly informed priors (Muth et al. 2018). We omitted the March
planting date in analyses for the severe freezing barrier because
the freezing barrier did not occur after this planting date in
any simulations. Additional variable combinations also resulted
in zero barriers, and these combinations were removed from
variability (CV) calculations. Posterior mean coefficients were
z-scaled for each model to aid in interpretation across variables.
Even though both response variables, CV and mean barriers, are
continuous data, we repeated the analysis with a censored model
(Supplement S3) because we expected some zero-inflation as the
original data are (left-censored) count data. However, we decided
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to present here results from the Bayesian generalized model and increases in precipitation had greater positive effects at low, than
results from the censored model in the Supplement because the high elevations (Table S4, similar relative coefficients for censored
censored model confirmed our findings and did not perform better models, Table S5; Figs. S11-S13). The opposite trends were
than the chosen method (Tables S4-S7; Figs. S5-S10). All ana- observed for the effects of elevation, precipitation, and their inter-
lyses were conducted in R version 4.0.3 (R Core Team 2020). action on germination favorability CV, with higher variability in

cool, dry sites (higher elevations, lower precipitation, lower heat
load index) and greater differences due to precipitation at lower

Results elevations (Table S6, similar relative coefficients for censored
A small number of sites for each species were generally unfavor- models, Table S7; Figs. S14-S16). The soil texture variable, clay
able for germination according to our simulations, based on hav- content, was positively associated with lower means and higher
ing more than half (20) of years with no germination (rate sum variability for germination favorability for PSSP and ELEL, but
<1) for most planting dates, despite meeting our initial site selec- not significantly associated for either means or CV for POSE
tion criteria. We removed those sites from all analyses (ELEL, (Tables S4 & S6). Seed source strongly influenced means and
seven sites; POSE, five sites; PSSP, three sites). Similarly, we weakly related to variability in favorability (rate sum) for all spe-
removed all variable combinations (site, year, species, source, cies (Tables S4 & S6; Fig. 2). November and March seeding dates
planting date) for analysis of barriers where no germination were associated with higher variability and lower means in favor-
was predicted (rate sum <1). ability for all species, the latter a simple consequence of fewer days

included in sums (Tables S4 & S6; Fig. 2).
Some environmental and management variables had similar

A PSSP Whitmar

T T T T T T T T T T T

T T T
10 12 2 4 6 8 10 12 2 -+ 6 8 10 12
Mean Germination Favorability (Rate Sum)

Environmental and Management Variables and Germination effects on post-germination barrier risk (mean occurrence) and var-
Favorability iability (CV), while others diverged by species or by mild versus
Mean and variability (CV) in germination favorability (rate sum) severe barrier types for freezing or drought. Freezing barrier risk
were linked to both major abiotic variables, particularly precipita- was significantly associated with interactions between precipitation
tion and elevation, and management factors, both seed source and elevation across species and severity categories; however, the
within species and planting date. Specifically, mean germination direction of these effects varied by both severity category and spe-
favorability was higher in warmer, wet sites (lower elevation, cies (Table S4). Within the range of elevations and precipitation of
higher precipitation, higher heat load index [non-significant for the sites, mild freezing risk was elevated with increased precipita-
POSE]), with precipitation and elevation interacting such that tion at low elevations, with the opposite trend at higher elevations
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Figure 2. Variation (CV, %) and mean for germination favorability (rate sum, values = 1 indicate predicted germination) by plant date and seed source for each
species (species codes and symbols: squares, ELEL, Elymus elymoides, light orange-red for sources; circles, POSE, Poa secunda, light-dark blue for sources;
triangles, PSSP, Pseudoroegneria spicata, light pink-purple for sources, see text for seed source details). Consistently favorable seedbed conditions are indicated
by higher mean and lower variation in germination favorability.
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Figure 3. Drought barrier variation (CV, %) and risk of occurrence (mean) by severity (mild and severe), plant date, and seed source for each species (species
codes and symbols: squares, ELEL, Elymus elymoides, light orange-red for sources; circles, POSE, Poa secunda, light-dark blue for sources; triangles, PSSP,
Pseudoroegneria spicata, light pink-purple for sources, darker symbols are for severe drought; lighter symbols are for mild drought, see text for seed source
details). Consistently lower risk of encountering drought barriers is indicated by lower means and variability.
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Figure 4. Freezing barrier variation (CV, %) and risk of occurrence (mean) by severity (mild and severe), plant date, and seed source for each species (species
codes and symbols: squares, ELEL, Elymus elymoides, light orange-red for sources; circles, POSE, Poa secunda, light-dark blue for sources; triangles, PSSP,
Pseudoroegneria spicata, light pink-purple for sources, darker symbols are for severe drought, lighter symbols are for mild drought, see text for seed source
details). Consistently lower risk of encountering freezing barriers is indicated by lower means and variability. The severe freezing barrier did not occur in March
planting date simulations.
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(Table S4; Figs. S11-S13). However, risk of mild freezing also
generally declined at higher elevations for POSE (Fig. S12) and
not for ELEL or PSSP (Figs. S11 & S13). In contrast, higher pre-
cipitation was associated with lower risk of severe freezing across
the elevation range in the study for all species (Table S4;
Figs. S11-S13). Freezing barrier risk also generally increased
across categories and in sites in cooler topographic microclimates
(lower heat load index) and with lower clay content (Table S4).

Variability in freezing barriers was also affected by interac-
tions between elevation and precipitation, except for mild bar-
riers for POSE (Table S6). The effects of precipitation and
elevation on variability in mild freezing barriers varied by spe-
cies, though variability was generally higher with higher precip-
itation across most of the elevation range (Figs. S14-S16).
Higher precipitation and elevations were associated with higher
variability in severe freezing risk for all species, with less differ-
ence associated with precipitation at lower elevations
(Figs. S14-S16). Freezing barrier variability, in both mild and
severe categories, was higher in warmer topographic microcli-
mate (higher heat load index) sites with higher clay content
(Table S6).

Risk of both mild and severe drought was associated with
interactive effects of precipitation and elevation. Drought risk
for all categories and species was generally higher in warmer,
drier sites (lower elevation and precipitation, higher heat load
index, Table S4; Figs. S11-S13). Higher clay content was asso-
ciated with increased mild drought risk and reduced risk of
severe drought (Table S4). Variability in drought risk was gen-
erally higher at cooler, wetter sites (higher elevation and precip-
itation, lower heat load index) across severity categories and
species, though interactive effects of precipitation and elevation
varied (Table S6; Figs. S11-S13). Higher clay content was asso-
ciated with lower variability, particularly for severe drought
(Table S6). Management decisions related to seed source
(within species) and planting date significantly affected both
freezing and drought risk and variability in most cases. Seed
sources significantly diverged in risk of exposure to drought
and freezing for all species and severity categories, except for
models for variability in severe drought (Tables S4 & S6;
Figs. 3 & 4). In some cases, the effects of seed source were con-
sistent across freezing and drought barriers and severity catego-
ries. For instance, for PSSP, “Whitmar” was associated with
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Figure 5. Proportion of years with relatively high or low risk for drought barriers based on the standardized anomaly for the site and planting date (value — mean/
standard deviation, high risk, > 1, low risk, < —1) by barrier severity, plant date, and species and seed source (species codes and symbols: squares, ELEL, Elymus
elymoides, light orange-red for sources; circles, POSE, Poa secunda, light-dark blue for sources; triangles, PSSP, Pseudoroegneria spicata, light pink-purple for

sources, see text for seed source details).
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Figure 6. Proportion of years with relatively high or low risk for freezing barriers based on the standardized anomaly for the site and planting date

(value — mean)/standard deviation, high risk, >1, low risk, <—1) by barrier severity, plant date, and species and seed source (species codes and symbols: squares,
ELEL, Elymus elymoides, light orange-red for sources; circles, POSE, Poa secunda, light-dark blue for sources; triangles, PSSP, Pseudoroegneria spicata, light
pink-purple for sources, see text for seed source details). The severe freezing barrier did not occur in March planting date simulations.

higher risk and variability, and “Anatone” with lower risk and
variability for encountering barriers across mild and severe cat-
egories for both freezing and drought barriers (Tables S4 & S5).
In contrast, in ELEL models, “Fish Creek” was consistently
associated with lower risk and variability for drought and freez-
ing barriers, both for severe and mild categories, but whereas
“Rattlesnake” and “Antelope” appeared relatively similar, and
differences in risk and variability associated with these sources
were less consistent across barrier types and severity categories
(Tables S4 & S5). Similar to the effects on germination favor-
ability, lower mean barrier occurrence and higher variability in
barriers were associated with later planting dates, November
and March compared to October, for all types of barriers
(Tables S4 & S6; Figs. 3 & 4).

Germination behavior across species and seed sources led to
differences in exposure to post-germination barriers that altered
the proportion of high-risk versus low-risk years for a given
planting date and site (Figs. 5 & 6). Specifically, the ELEL
source Fish Creek and the POSE cultivar “Sherman” had higher
variability and lower means for drought and freezing barriers
than other species and sources (Figs. 3 & 4); this was also

fundamentally associated with lower rate sums, or germination
favorability (Fig. 2). Therefore, the less-frequent exposure to
high risk (high proportion of low-risk years) for these species
and seed sources (Figs. 5 & 6) is likely also related to lower aver-
age germination favorability (Fig. 2). Differences in relative risk
across species and seed sources were also much greater for par-
ticular seeding dates and barrier types (i.e. mild drought, March
vs. severe drought, November, Fig. 5).

Discussion

Our results demonstrate that management decisions, like
planting date and seed source, can be highly influential in con-
trolling risk of poor and variable restoration outcomes associ-
ated with early seedling life stages, between germination and
emergence, in the Great Basin. These management factors were
comparable to the effects of major environmental variables,
namely elevation and precipitation, that have recognized influ-
ence over regional regeneration and post-fire seeding outcomes
(Chambers et al. 2014; Knutson et al. 2014). In general, planting
date interacted with germination behavior, a function of species
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and seed source, leading to divergent exposure to adverse
weather even for the small set of seed sources considered in this
study.

Seed source and planting date are major decisions in manage-
ment planning. For instance, seedling establishment could be
enhanced by tailoring planting date to weather conditions (with
short-term climate forecast predictions) at a particular site and
thereby reducing the likelihood of exposure of small, post-
germination seedling to drought or freezing conditions. Planting
date has relatively well documented relationships with germination
timing and restoration outcomes in sagebrush steppe (Wainwright
etal. 2012; Boyd & James 2013; Boyd & Lemos 2015). However,
heterogeneity in germination behavior related to seed source is less
understood and not necessarily included in management planning.
In our simulations, germination behavior and associated exposure
to restoration barriers was highly variable within and across the
common species despite the small set of seed sources that we used
in this analysis. This suggests careful selection of seed source
based on germination behavior, particularly in concert with plant-
ing date, might be a useful strategy for avoiding post-germination
early seedling drought and freezing barriers. For instance, our
results showed that Pseudoroegneria spicata ‘“Whitmar,” a
species/seed source with relatively high exposure to mild freeze
barriers, might experience about a threefold likelihood of encoun-
tering freezing barriers on average if seeded on 15 October com-
pared to 15 November. In contrast, fall planting dates had much
less of an effect on exposure to freezing for the slower germinating
species/source P. secunda “Sherman”. Though our results demon-
strate the potential impacts of one specific trait, relative germina-
tion rate, on restoration outcomes, many other germination and
seedling traits known to vary by seed source are likely to influence
establishment of seeded species across environmental gradients
(Larson et al. 2015; Baughman et al. 2019; Leger et al. 2019).

Higher germination favorability and barrier occurrence for
fall versus spring plantings is partially due to our simulation
approach, as germination favorability and barriers continuously
accumulated until early summer. This approach may overesti-
mate both favorability and barrier impacts, because in field con-
ditions, multiple post-germination seed mortality events would
diminish the quantity of remaining viable seeds, likely leading
to a negative or neutral relationship between barriers and seed-
ling numbers for fall planting dates. In contrast, sequential bar-
riers are less likely to affect outcomes with spring planting
dates due to the shorter favorable germination window during
this period truncated by dry summer conditions. On the other
hand, spring seeding dates have a limited window for encounter-
ing favorable environmental conditions for germination and
seedling growth prior to summer drought. While this simulation
approach does have limitations, it also recognizes the trade-offs
relevant to management in the region, where winter snow and
early spring mud often limit large-scale seeding operations to
either late-fall and mid-spring periods.

Our simulations are generally only weak representations of early
seedling mortality or even germination behavior in field conditions.
Numerous environmental variables omitted from our simulation
influence seedling mortality, from pathogens to soil crusting, and
some of these may also interact with other environmental and

management factors (e.g. fungal pathogens and freezing, Gornish
et al. 2015). Germination behavior with respect to moisture and
temperature may diverge between field soil conditions and the lab-
oratory environment, mostly due to the highly dynamic nature of
soil microclimate. In addition, seedling mortality with drought
and freezing is linked to a complex set of physiological
responses to sequences of environmental conditions, rather
than the more simplistic temperature or soil moisture scenarios
included here. Thresholds or interactions for environmental
factors directly tied to mortality are not well characterized for
our focal species or other herbaceous species broadly used in
restoration in the Great Basin, despite field observations
supporting their importance (e.g. Boyd & Lemos 2013;
James et al. 2019). Though our simulation approach may not
holistically represent field outcomes, it allows for relative com-
parisons of the effects of management decisions and environ-
mental conditions across broad spatiotemporal scales.

Our barrier simulations were designed to target barriers likely
to affect early life stages for seedlings. However, sparse data are
available to describe the exact environmental conditions likely
to cause mortality for our target species (or sources within spe-
cies) and the effects of these conditions are also likely to vary
with physiological processes associated with antecedent
weather and seedling size. For example, grass seedlings are able
withstand extreme drought, when slow drying allows for root
growth (Hanslin et al. 2019). Similarly, freezing tolerance can
be affected by previous acclimation to cold, and this acclimation
also varies by cultivar (Eagles 1989). Despite this lack of biolog-
ical information related to mortality, our results are broadly con-
sistent with observations of weather effects on mortality, and
subsequent restoration outcomes in the Great Basin for common
grass species (James et al. 2019; Pyle et al. 2021) and big sage-
brush (Artemisia tridentata L.), a widely seeded and studied spe-
cies (O’Connor et al. 2020).

Environmental factors like precipitation and temperature are
often linked to natural regeneration and restoration success and var-
iability across broad scales in the Great Basin (Chambers et al. 2014;
Knutson et al. 2014). Our results demonstrate that conditions favor-
ing germination in certain critical periods may also increase the
potential for risk of adverse weather conditions for seedlings. For
example, freezing barriers are more likely to occur, on average, in
relatively warmer, wetter sites (low elevation, high precipitation,
warmer topographic position) in this cold desert region because fall
germination is more likely in these locations than in higher elevation
and/or drier locations. This simulation approach was also able to
demonstrate significant, though generally weaker, effects of soil
texture and microclimate relative to macroclimate factors like aver-
age precipitation and elevation, as well as differences in their
effects across species models. However, these effects were not
necessarily consistent across barrier types and/or species. For
example, clay content strongly increased risk and variability
of severe drought for PSSP and ELEL, but only weakly for
POSE, underscoring how germination behavior, a function of
species and seed source in this analysis, may influence expo-
sure to seedling exposure to adverse weather conditions.

However, beyond the effects of environmental variables, this
study demonstrates how seeding date and differences in germination
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behavior, associated even with seed source for one species, can have
consequential outcomes with respect to amplifying or dampening
both variability and overall exposure to adverse conditions likely
to lead to seedling mortality. Efforts to increase restoration success
may benefit from additional research focused on specific weather-
related barriers causing seedling mortality (Bradford et al. 2018;
Hardegree et al. 2018a; O’Connor et al. 2020), particularly tech-
niques that directly address these barriers. For example, seed coat-
ings and other methods can be used to manipulate germinate
timing and increase the likelihood seeds will encounter favorable
conditions (Pedrini et al. 2020) or seeding methods (depth, mulch)
can be applied to improve the soil microclimate conditions encoun-
tered by early-stage seedlings (Shaw et al. 2020).

Ecosystem function in sagebrush steppe is threatened by multi-
ple, interacting change drivers including non-native species inva-
sion, increasing wildfire, and climate change (Abatzoglou &
Kolden 2011; Bradford et al. 2020). These concurrent pressures
are likely to increase restoration needs. Harnessing the interplay
between management practices, site environment, and weather to
maximize plant survival during early life stages could be an avenue
for reducing the rate of seed-based restoration failure in this semi-
arid region.
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