Global Change Biology (2010) 16, 990–1002, doi: 10.1111/j.1365-2486.2009.01966.x

Physiological and environmental regulation of interannual variability in CO₂ exchange on rangelands in the western United States

H. WAYNE POLLEY*, WILLIAM EMMERICH†, JAMES A. BRADFORD‡, PHILLIP L. SIMS‡, DOUGLAS A. JOHNSON§, NICANOR Z. SALIENDRA¶, TONY SVEJCAR∥, RAYMOND ANGELL∥, ALBERT B. FRANK**, REBECCA L. PHILLIPS**, KEIRITH A. SNYDER†† and JACK A. MORGAN‡‡

*US Department of Agriculture, Agricultural Research Service, Grassland, Soil and Water Research Laboratory, 808 East Blackland Road, Temple, TX 76502, USA, †US Department of Agriculture, Agricultural Research Service, Tucson, AZ 85719, USA, ‡US Department of Agriculture, Agricultural Research Service, Woodward, OK 73801, USA, §US Department of Agriculture, Agricultural Research Service, Logan, UT 84322, USA, ¶US Forest Service, Rhinelander, WI 54501, USA, ∥US Department of Agriculture, Agricultural Research Service, Burns, OR 97720, USA, **US Department of Agriculture, Agricultural Research Service, Mandan, ND 58554, USA, ††US Department of Agriculture, Agricultural Research Service, Reno, NV 89512, USA, ‡‡US Department of Agriculture, Agricultural Research Service, Ft. Collins, CO 80526, USA

Abstract

For most ecosystems, net ecosystem exchange of CO_2 (NEE) varies within and among years in response to environmental change. We analyzed measurements of CO₂ exchange from eight native rangeland ecosystems in the western United States (58 site-years of data) in order to determine the contributions of photosynthetic and respiratory (physiological) components of CO₂ exchange to environmentally caused variation in NEE. Rangelands included Great Plains grasslands, desert shrubland, desert grasslands, and sagebrush steppe. We predicted that (1) week-to-week change in NEE and among-year variation in the response of NEE to temperature, net radiation, and other environmental drivers would be better explained by change in maximum rates of ecosystem photosynthesis (A_{max}) than by change in apparent light-use efficiency (α) or ecosystem respiration at 10 °C (R_{10}) and (2) among-year variation in the responses of NEE, A_{max} and α to environmental drivers would be explained by changes in leaf area index (LAI). As predicted, NEE was better correlated with A_{max} than α or R_{10} for six of the eight rangelands. Week-to-week variation in NEE and physiological parameters correlated mainly with time-lagged indices of precipitation and water-related environmental variables, like potential evapotranspiration, for desert sites and with net radiation and temperature for Great Plains grasslands. For most rangelands, the response of NEE to a given change in temperature, net radiation, or evaporative demand differed among years because the response of photosynthetic parameters (A_{max}, α) to environmental drivers differed among years. Differences in photosynthetic responses were not explained by variation in LAI alone. A better understanding of controls on canopy photosynthesis will be required to predict variation in NEE of rangeland ecosystems.

Keywords: climatic variability, desert, functional change, grassland, leaf area, light-use efficiency, net ecosystem exchange of CO₂, precipitation, respiration, shrubland

Received 13 March 2009 and accepted 27 April 2009

Introduction

Micrometeorological measurements of CO_2 fluxes have been initiated in a number of ecosystems to determine mechanisms regulating terrestrial carbon (C) balance (Baldocchi *et al.*, 2001; Svejcar *et al.*, 2008). A specific goal

Correspondence: H. Wayne Polley, tel. + 254 770 6629, fax + 254 770 6561, e-mail: wayne.polley@ars.usda.gov

990

of these measurements is to determine how environmental drivers of C accumulation vary among ecosystems and to assess the sensitivity of net ecosystem exchange of CO_2 (NEE) to interannual variability in climate. Ultimately, it is hoped that these measurements can be used to develop CO_2 exchange–climate relationships relevant to the terrestrial C cycle (i.e., Friend *et al.*, 2007).

The response of CO₂ exchange to climate has been found to vary through time, however, thus limiting our ability to predict NEE from change in climatic variables alone (Barford et al., 2001; Hui et al., 2003; Richardson et al., 2007; H. W. Polley, W. Emmerich, and J. A. Bradford, unpublished data). If climatic variation is to be useful as a predictor of ecosystem CO₂ exchange, we must understand why and how flux-climate relationships change through time. We refer to short-term (days to months) changes in climatic variables as variation in the environment. Longer-term changes in these variables are taken as climatic variation. A given change in the environment may have a similar effect on CO₂ fluxes among years. Following Hui et al. (2003), we regard these repeatable effects of environmental variation as 'direct effects of the environment' on CO2 exchange. Alternately, a given change in the environment may affect CO₂ fluxes differently among years because of year-toyear variation in the biological processes that regulate CO₂ uptake and release. Variation in biological functioning is termed 'functional change,' and may be quantified by calculating the contribution of year-to-year differences in slopes of flux-environment relationships to the total variance in CO2 fluxes explained by environmental variation (Hui et al., 2003). Many of the biological processes that regulate flux responses to the environment are affected by longer-term climatic patterns, and so functional change often results from climatic variation. Richardson et al. (2007) attributed a slightly greater proportion of the variance in NEE for spruce forest to interannual differences in the response of CO₂ exchange to environmental drivers than to direct effects of environmental variation on fluxes. H. W. Polley, W. Emmerich, and J. A. Bradford (unpublished data) found that functional change accounted for more than twice the variance in NEE of direct effects of environmental variability for six of eight rangeland ecosystems. Functional change in NEE on rangelands was associated with interannual variation in precipitation.

NEE represents the relatively small difference between the larger fluxes of photosynthesis and the sum of autotrophic and heterotrophic respiration (Valentini *et al.*, 2000). Photosynthesis and respiration may respond to different environmental and other variables or to climatic variability at different rates (Luyssaert *et al.*, 2007; Polley *et al.*, 2008). It is likely, therefore, that environmental effects on NEE cannot be predicted

Published 2009

accurately without understanding how NEE is regulated by its component processes.

It is also likely that we must identify the biological processes that explain functional change in NEE and its physiological components in order to calculate C balance. Several biological processes regulate flux responses to environmental drivers, but canopy development is among the most important in the arid and semiarid ecosystems known collectively as rangelands. Grassland fluxes are highly responsive to seasonal and among-year variation in live biomass and leaf area index (LAI; Sims & Bradford, 2001; Flanagan *et al.*, 2002; Li *et al.*, 2005; Phillips & Beeri, 2008), for example. Canopy development and other biological processes that regulate photosynthesis and respiration, in turn, are affected by seasonal or annual amounts of precipitation (Knapp & Smith, 2001; Knapp *et al.*, 2002).

We used CO₂ flux measurements collected by participants in the Rangeland Carbon Flux network (United States Department of Agriculture, Agricultural Research Service) to assess the contributions of photosynthetic and respiratory components of NEE to variation in growing season values of CO2 exchange for eight native rangeland ecosystems in the western United States. Rangelands included Great Plains grasslands, desert shrubland, desert grasslands, and sagebrush steppe. Functional change explained 10-40% of the variance in NEE for these eight rangelands (Polley et al., submitted); hence, a primary objective was to identify the physiological component of flux most responsible for among-year variation in NEEenvironment relationships. We also sought to determine the extent to which flux responses to environmental drivers were regulated by interannual variation in LAI. We hypothesized that (1) week-to-week variation in NEE would be better explained by variation in maximum rates of ecosystem photosynthesis (A_{max}) than by change in apparent light-use efficiency (α) or basal rates of ecosystem respiration (R_{10}), consistent with the finding that variability in NEE depended mainly on variation in daytime net CO₂ uptake in a desert shrubland (Jasoni *et al.*, 2005); (2) functional change in NEE would correlate more highly with among-year variation in the response of A_{max} to the environment than with variation in responses of α or R_{10} to the environment; and (3) variation in LAI would explain functional change in NEE, A_{max} , and α on grasslands, as implied by the strong correlation between grassland fluxes and leaf area reported by Flanagan et al. (2002) and others.

Materials and methods

Site description

We measured CO₂ exchange on eight native rangeland ecosystems in the central and western United States

(Table 1). Rangelands were considered to be in good ecological condition based on species composition and were not grazed by livestock, burned, or fertilized during the period of measurements. Before measurements, the rangelands studied either had not been grazed for 10 or more years or had been lightly to moderately grazed by livestock. Svejcar *et al.* (2008) provide a description of soils and dominant plant species for each rangeland.

CO₂ fluxes and climatic variables

Fluxes on each rangeland were measured using Bowen ratio/energy balance (BREB) instrumentation (Model 023/CO₂ Bowen ratio system, Campbell Scientific Inc., Logan, UT, USA). Flux rates were calculated using methods described by Dugas (1993) and Dugas et al. (1999). Bowen ratios were calculated using air temperature and water vapor gradients measured every 2s at 1 and 2m above the plant canopy. Gradients in water vapor and CO₂ were measured with Model 6262 infrared gas analyzers (Li-Cor Inc., Lincoln, NE, USA) that were calibrated weekly. Sensible heat flux was calculated using the Bowen ratio, average net radiation (Rn) measured with Model Q*7.0 and 7.1 net radiometers (REBS, Seattle, WA, USA), and soil heat flux measured using two Model HFT soil heat flux plates (REBS). The turbulent diffusivity (assumed equal for heat, water vapor, and CO₂) was calculated using the temperature gradient, sensible heat flux, and air density. Carbon dioxide fluxes (mg m⁻² s⁻¹) were derived by multiplying turbulent diffusivity by the change in the density of CO2 measured between 1 and 2 m above the canopy and correcting for differences in water vapor density (Webb et al., 1980). Latent heat was determined as the energy remaining after subtracting soil heat flux and sensible heat flux from net radiation. Actual evapotranspiration (AET) was calculated by dividing the latent heat of evaporation by the latent heat of vaporization. Flux toward the surface was considered to be negative in sign.

Two aerodynamic methods are widely used to measure CO_2 fluxes: the BREB technique used here and the eddy covariance technique. Both methods depend on calculated values of diffusivity, which may be unreliable for periods of stable atmospheric conditions as sometimes occur at night. Results from the two approaches are similar, however, when data are processed appropriately (Dugas *et al.*, 2001; Wolf *et al.*, 2008). When turbulent diffusivity estimated by the BREB approach failed, as evidenced by differences in signs of the sensible/latent heat flux calculations and the temperature/water vapor gradient, we calculated turbulent diffusivity using wind speed, atmospheric stability, and canopy height (Dugas *et al.*, 1999). This alternative method of estimating diffusivity was used in about 10% of calculations, mostly at night. Frank *et al.* (2000) showed that CO_2 fluxes measured at night on grasslands using the BREB method were only slightly smaller than the sum of estimated nighttime plant and soil respiratory losses. Fluxes calculated using the BREB method also have been shown to be similar to those estimated from biomass production (Dugas *et al.*, 1999) and canopy chambers (Angell *et al.*, 2001).

Svejcar *et al.* (2008) describe measurements of additional climatic variables, including soil temperature (ST), wind speed (WS), relative humidity (RH), vapor pressure (*e*), and temperature of air (AT). Following Stephenson (1990), we define the parameter 'evaporative deficit' as evaporative demand not met by available water. A value of evaporative deficit for each day was calculated as the difference between daily values of potential evapotranspiration (PET) and AET. Daily values of PET were calculated with the Penman–Monteith equation using measurements of Rn, WS, AT, and *e*.

Leaf area was measured at four positions surrounding Bowen ratio equipment on each of the three Great Plains grasslands at approximately 2-week (Mandan) or 4-week intervals (Nunn, Woodward). On each sampling date, one quadrat (0.25 m^2) was randomly placed within each of four permanently located plots (each $30 \text{ m} \times 30 \text{ m}$) on each grassland. Vegetation in each quadrat was clipped to ground level, and the surface area of green tissues (leaf area) was measured with a photoelectric meter. Leaf area was not measured repeatedly during each growing season on other rangelands.

Daily values of NEE and of climatic variables were calculated from measurements every 20 min. We did not attempt to gap fill missing data, which accounted for <1% of data points during daylight hours and 2% of data points at night (Svejcar *et al.*, 2008). Missing flux values typically are estimated using the associated environmental conditions. Gap filling would have introduced autocorrelation between fluxes and climate.

In order to reduce fluctuations inherent in daily values, we calculated weekly means of CO_2 fluxes and climatic variables. For each week during each growing season, we also calculated the weekly sum of precipitation (ppt1) and the mean of precipitation per week for the current week and the previous 1–7 weeks (denoted as ppt2–ppt8).

We were concerned primarily with environmental and biological regulation of CO_2 uptake, and so we only considered data collected during the growing season for each rangeland. The beginning date of the growing season was considered the first of 3 or more consecutive weeks with negative values of NEE during daylight hours (net CO_2 uptake). The ending date of the growing season was identified as the final week with negative values of daytime NEE before 3 or more consecutive weeks with positive daytime NEE. Beginning and

Table 1 Location, vegetat	ion type, site characteri	istics, and the years a	and growing seasor	n period considered	for flux measureme	nts for rangeland ec	osystems in this study
Location	Vegetation type	Latitude (°N)/ Longitude (°W)	Elevation (m)	Mean annual precipitation (mm)	Maximum/ minimum precipitation (mm)	Growing season (doy)	Years
Las Cruces,	Desert grassland	32°60′ / 106°75′	1230	227	327/175	71–301	1996–2001
INEW MEXICO (INIM) Tucson, Arizona (AZ; Lucky Hills)	Desert shrubland	31°44′/110°03′	1372	356	457/207	1–365	1997–2002
Tucson, Arizona (AZ; Kendall)	Desert grassland	31°44′/109°56′	1526	356	490/198	1–365	1996–2003
Burns, Oregon (OR)	Sagebrush steppe	43°29′/119°43′	1380	298	339/107	106-266	1995–2000, 2003
Nunn, Colorado (CO)	Shortgrass steppe	$40^{\circ}41'/104^{\circ}45'$	1660	321	420/233	120–294	1996, 1998–2001
Dubois, Idaho (ID)	Sagebrush steppe	$44^{\circ}16/112^{\circ}08'$	1700	340	389/188	99–280	1996-2003
Mandan, North Dakota	Northern mixed-	$46^{\circ}46'/100^{\circ}55'$	518	482	601/322	106 - 301	1995-2001
(ND) Woodward, Oklahoma	grass prairie Southern mixed-	36°36′ / 99°35′	219	728	802/454	92–315	1995–2005
(OK)	grass prairie						

Ecosystem physiological parameters

Mean diurnal trends in NEE, Rn, and ST were derived by averaging observations for each 20-min period during the day over each week. Physiological components of NEE were then calculated for each week by fitting a simple physiological model to diurnal trends, where

NEE =
$$((A_{\max} \alpha \text{ PPFD})/(A_{\max} + \alpha \text{ PPFD}))$$

+ $R_{10}Q_{10}^{((\text{ST}-10)/10)}$, (1)

and A_{max} is the maximum rate of ecosystem gross photosynthesis (GPP, μ mol CO₂ m⁻² s⁻¹) at infinite photosynthetic photon flux density (PPFD; μ mol photons m⁻² s⁻¹), α is the initial slope of the ecosystem light-response curve or the apparent light-use efficiency (mol CO_2 mol⁻¹ photons), R_{10} is ecosystem respiration rate at 10 °C (μ mol CO₂ m⁻² s⁻¹), Q₁₀ is the temperature sensitivity of ecosystem respiration for a 10 °C change in ST, and PPFD equals $Rn \times 3.002$, as determined from year-long measurements at the Lucky Hills site (PPFD was not measured at each site). Physiological components of NEE (A_{max} , α , R_{10} , Q_{10}) were estimated by fitting nonlinear, least-squares regressions to diurnal trends using the Gauss-Newton method. Parameter values were restricted during regression to the following ranges: A_{max} (0.1–60), α (0.001–0.08), R_{10} (0.1-8.0), and Q_{10} (1.0-3.0). Respiration depends on soil water content and the availability of C substrates to plants and microbes as well as on temperature (Davidson et al., 2006; Polley et al., 2006). Estimates of the apparent temperature sensitivity of respiration (Q_{10}) may be confounded if photosynthetic activity and soil water content covary with temperature, as often occurs over periods of several days. In order to reduce the influence of these confounding variables on Q_{10} , we calculated a mean value of Q_{10} for each year following methods of Reichstein et al. (2005). For each site and year, we fit Eqn (1) to data from 3-week periods created by shifting the initial week of the period by 1 week before each regression was fit. A value of Q_{10} for each season at each site was then derived by averaging the Q_{10} values estimated for each 3-week period using the inverse of the standard error of estimate as the weighting factor. We set the Q_{10} parameter in Eqn (1) to this average value for the growing season, then refit the physiological model to derive A_{max} , α , and R_{10} for each week.

Published 2009

This article is a US Government work and is in the public domain in the USA, Global Change Biology, 16, 990–1002

Calculation of function change in NEE and physiological parameters

We used the homogeneity-of-slopes (HOS) regression model (Hui et al., 2003) to determine the contribution of interannual variation in flux-environment relationships or functional change to variance in NEE, A_{max} , α , and R_{10} . We first tested for linearity of flux-environment relationships for each rangeland using simple linear regression analysis and data from all years of record. For each rangeland, we then used stepwise multiple linear regression (forward selection of variables) analysis to determine relationships between weekly values of NEE, A_{max} , α , and R_{10} , and weekly averages of environmental variables that were significantly linearly correlated with NEE in simple regression (single-slopes model). Environmental variables retained in multiple regression models when data from all years were considered were then entered into a HOS analysis (separate-slopes model). Functional change was detected when the slope of one or more of the fluxenvironment relationships differed significantly among years. The sum of squares for functional change for each flux (NEE, A_{max} , α , or R_{10}) and each rangeland was calculated by summing across years the squared difference between fluxes estimated using a separate-slopes regression model and fluxes calculated with a singleslope multiple regression model.

In order to determine how functional change affected NEE and it physiological components at each site, we calculated NEE, A_{max} , α , and R_{10} each year using the separate-slopes model. Each flux variable was calculated using the multiyear average of each environmental variable included in the regression model.

Results

Seasonal trends in CO₂ exchange and climate

The seasonal trend in NEE for each rangeland became evident when CO_2 flux for each week was averaged among years and plotted against day of the year. These multiyear averages of NEE for each week increased (became more negative) from the winter low to a maximum during summer then declined during late summer and autumn on Great Plains grasslands at Nunn, Mandan, and Woodward and on sagebrush steppe at Dubois and Burns (Fig. 1). On average, these ecosystems functioned as CO_2 sinks during most of the growing season. By contrast, desert rangelands at Las Cruces, Lucky Hills, and Kendall functioned as CO_2 sinks only for brief periods during the season.

Multiyear averages of A_{max} , α , and R_{10} followed seasonal patterns similar to those of NEE (Fig. 2). Like NEE, A_{max}

increased from winter to summer, and then declined during late summer and autumn for grasslands at Nunn, Mandan, and Woodward and sagebrush steppe at Dubois and Burns. Peak values of mean A_{max} were smallest for sagebrush steppe ecosystems (Dubois, Burns) and greatest for southern mixed-grass prairie (Woodward). Means of R_{10} increased in summer to maximum values coincident with the seasonal maxima of A_{max} on most rangelands.

Averages of NEE for each week were highly linearly correlated with averages of A_{max} on all rangelands (not shown; $r^2 = 0.45 - 0.89$; *P* < 0.0001 for all regressions), except desert grassland at Las Cruces (P = 0.88). Mean values of $A_{max'}$ in turn, were positively correlated with precipitation on each rangeland (Fig. 3). A_{max} was best fit with a power function of precipitation per week averaged over the 5 and 8 weeks before flux measurements for desert ecosystems at Lucky Hills and Kendall, respectively (P < 0.001). A_{max} -precipitation relationships for remaining rangelands were linear. Means per week of A_{max} increased by 0.72–0.99 μ mol m⁻²s⁻¹ for each 1 mm week⁻¹ increase in precipitation over the 5–7 weeks before flux measurements. Mean values of A_{max} were also positively corrected with AT on all rangelands (not shown; $r^2 = 0.23-0.74$; P < 0.001 for all regressions), except sagebrush steppe at Dubois (P = 0.78). Air temperature explained a smaller fraction of the variation in A_{max} than precipitation on all rangelands except mixedgrass prairie at Mandan and Woodward.

Weekly values of NEE were also more highly correlated with A_{max} than α or R_{10} for six of the eight rangelands (Table 2). As estimated from linear regression equations, NEE increased by $0.1-1.0 \text{ g CO}_2 \text{ m}^{-2} \text{ day}^{-1}$ for each $1 \mu \text{mol m}^{-2} \text{s}^{-1}$ increase in A_{max} . The increase in NEE per unit increase in A_{max} was greater for sagebrush steppe ecosystems at Dubois and Burns than for other rangelands. Weekly NEE values correlated most strongly with R_{10} on desert grassland at Las Cruces $(r^2 = 0.10, P < 0.0001, n = 145)$ and with α on mixed-grass prairie at Woodward ($r^2 = 0.17$, P < 0.0001, n = 296). The slope of the NEE- R_{10} regression for Las Cruces was positive $(1.76 \text{ g CO}_2 \text{ m}^{-2} \text{ day}^{-1})$ per $1 \,\mu\text{mol}\,\text{m}^{-2}\,\text{s}^{-1}$ increase in R_{10}), indicating that net CO₂ uptake decreased as the rate of respiration at 10 °C increased on this desert grassland.

Relationships of physiological components of NEE to the environment and LAI

Single-slopes regression models were used to relate weekly values of NEE and of physiological parameters at each site to environmental variables that were significantly correlated with NEE in simple regression (Table 3). Environmental variables explained between 5% and 40% of the variation in weekly observations of

Published 2009

Fig. 1 Seasonal variation in net ecosystem exchange of CO_2 (NEE) for rangeland ecosystems at eight locations in the western United States. Measurements for a given week during the growing season were averaged for all years of observations (n = 5-11 years).

NEE (P < 0.01 for all models) and between 16% and 63% of the variance in A_{max} (*P* < 0.0001 for all models). Environmental variables explained >24% of the variance in R_{10} on all rangelands except the three Great Plains grasslands and >13% of the variance in α on all rangelands except the three desert ecosystems. Weekly values of NEE and of derived physiological parameters were correlated mainly with time-lagged indices of precipitation and water-related environmental variables, such as RH, evaporative deficit, and PET, for desert sites and sagebrush steppe at Burns, and with net radiation (Rn) and temperature (AT, ST) for grasslands at Nunn, Mandan, and Woodward and sagebrush steppe at Dubois. Time-lagged indices of precipitation, including mean precipitation per week for 5-7 weeks preceding flux measurements (ppt5-ppt7), and Rn were negatively correlated with NEE and positively correlated with physiological parameters. The implication is that both greater Rn and greater precipitation increased net CO₂ uptake by increasing A_{max} and α . Interestingly, the observation that R_{10} also increased with greater Rn and precipitation indicates that increases in CO₂ uptake were associated with increases in respiration rate at 10 °C. Both A_{max} and R_{10} responded positively to increased precipitation during the week of flux measurements (ppt1) at Woodward. The positive effect of ppt1 on respiration apparently more than offsets benefits of greater A_{max} for net CO₂ uptake, for greater ppt1 reduced net CO₂ uptake (positive association with NEE) on this mixed-grass prairie.

Canopy development may change seasonally as Rn, temperature, and precipitation change; hence, the flux–environment correlations we observed ultimately may result from environmental effects on leaf area or other properties of the plant canopy. Indeed, A_{max} was positively and linearly correlated with LAI for each of the three rangelands for which leaf area data are available

Fig. 2 Seasonal variation in the maximum rate of ecosystem gross photosynthesis (A_{max}), apparent light-use efficiency (α), and ecosystem respiration rate at 10 °C (R_{10}) for rangeland ecosystems at eight locations in the western United States. Measurements for a given week during the growing season were averaged for all years of observations (n = 5–11 years).

Fig. 3 Relationships between means of the rate of ecosystem gross photosynthesis (A_{max}) for each week during the growing season and weekly means of precipitation for rangelands at eight locations in the western United States. A_{max} is plotted as a function of precipitation per week averaged for the week A_{max} was measured and the previous 6 weeks (ppt7; Nunn), 7 weeks (ppt8; Kendall), or 4 weeks (ppt5; remaining rangelands). A_{max} for Lucky Hills and Kendall was fit with a power function of precipitation (P < 0.001). Lines shown for other rangelands are linear regression fits to data (P < 0.0001 for all regressions).

(not shown), including northern and southern mixedgrass prairie at Mandan and Woodward, respectively, and short-grass steppe at Nunn ($r^2 = 0.43$, 0.31, and 0.58, and n = 69, 44, and 30, respectively; P < 0.0001 for all regressions). Slopes of A_{max} –LAI regressions differed significantly among years at Mandan (P < 0.0001), but not at Nunn or Woodward (P = 0.51 and 0.30, respectively). Environmental effects on canopy photosynthesis were apparently mediated largely through changes in leaf area at the latter two sites.

Functional change

Slopes of regression relationships among A_{max} , α , and R_{10} and most of the environmental variables that ex-

plained variation in NEE differed significantly among years (Table 3). Interannual variability in physiological parameters, like variability in NEE, thus resulted partly from change in functional properties of these ecosystems or from functional change. Functional change explained between 10.4% (Woodward) and 32.0% (Nunn) of variance in A_{max} among the seven sites with significant A_{max} -environment relationships. Functional change accounted for 14.2% (Woodward) to 45.0% (Burns) of the variance in α and between 9.0% (Woodward) and 42.0% (Mandan) of variance in R_{10} values.

Functional change in net CO_2 uptake was highly correlated with functional change in at least one physiological component of NEE on six of the eight rangelands (Table 4). Functional change in NEE was

Published 2009

This article is a US Government work and is in the public domain in the USA, Global Change Biology, 16, 990–1002

associated with among-year differences in slopes of relationships between α and the environment for sagebrush steppe at Dubois and both northern and southern mixed-grass prairies at Mandan and Woodward, respectively. Among-year variation in Amax-environment relationships largely explained functional change in NEE on desert rangelands at Kendall and Lucky Hills, whereas year-to-year variation in R_{10} -environment relationships explained functional change in NEE on sagebrush steppe at Burns. Slopes of linear regressions linking differences in NEE caused by functional change with among-year differences in A_{max} and α caused by functional change were negative, indicating that CO_2 uptake was greatest during years when A_{max} and α were greatest. By contrast, CO₂ uptake on sagebrush steppe at Burns was greatest during years when R_{10} values were smallest. Functional change in NEE was not correlated with change in physiological components of CO₂ flux on either desert grassland at Las Cruces or shortgrass steppe at Nunn.

Functional change in NEE was explained partly by among-year differences in the maximum value of LAI for shortgrass steppe and mixed-grass prairie at Mandan and Woodward and partly by variation in the length of growing seasons for grasslands at Nunn and Woodward and for sagebrush steppe at Dubois. The greater was LAI during a given year, the greater was net CO₂ uptake. Among-year variation in LAImax was not correlated with among-year differences in *α*-environment relationships at Mandan and Woodward (P = 0.99), however, indicating that functional change in α and ultimately in NEE depended on factors other than leaf area. Net CO₂ uptake was also greater during years in which the growing season was longer (Dubois; $r^2 = 0.84$, P < 0.0008), began earlier (Nunn; $r^2 = 0.56$, P = 0.09), or ended later (Woodward; $r^2 = 0.30$, P = 0.05).

Table 2 Linear regression analyses for relationships between weekly values of net ecosystem CO₂ exchange (NEE; $g CO_2 m^{-2} day^{-1}$) and weekly values of A_{max} (µmol m⁻²s⁻¹; independent variable) for each of eight rangeland ecosystems

Location	Intercept	Slope	п	r^2	P-value
Las Cruces, NM	2.72	-0.12	145	0.03	0.01
Tucson, AZ	2.30	-0.37	273	0.30	< 0.0001
(Lucky Hills)					
Tucson, AZ	2.51	-0.46	298	0.62	< 0.0001
(Kendall)					
Burns, OR	0.63	-0.66	134	0.40	< 0.0001
Nunn, CO	-0.08	-0.33	105	0.21	< 0.0001
Dubois, ID	1.83	-0.97	185	0.57	< 0.0001
Mandan, ND	1.96	-0.46	178	0.48	< 0.0001
Woodward, OK	1.71	-0.24	309	0.16	< 0.0001

Discussion

Variation in NEE was better correlated with change in $A_{\rm max}$ than with variation in α or R_{10} for six of eight ungrazed native rangeland ecosystems in the western United States. Week-to-week variation in NEE and in derived physiological parameters, A_{max} , α , and R_{10} , correlated mainly with time-lagged indices of precipitation and water-related environmental variables, like PET, for desert sites and with net radiation and temperature for Great Plains grasslands. For most rangelands, the response of NEE to a given change in temperature, net radiation, or evaporative demand differed among years because the photosynthetic parameters A_{max} and α responded differently environmental drivers among years. Differences in photosynthetic responses were not explained by differences in LAI alone, however. We obviously must better understand how CO2 uptake is regulated to predict NEE of these ecosystems.

Seasonal patterns

When averaged among years, weekly values of photosynthetic and respiratory parameters displayed a strong seasonal pattern that was correlated with seasonal trends in NEE. Seasonal patterns of NEE correlated most strongly with trends in A_{max} . Canopy photosynthetic capacity, in turn, was positively correlated with time-lagged indices of precipitation at each site, underscoring the critical role of water availability in the functioning of rangeland ecosystems. Hollinger *et al.* (1999) and Syed *et al.* (2006) observed large seasonal variation in A_{max} and R_{10} in boreal forest and treed fen, respectively. In these relatively mesic ecosystems, seasonal variation in A_{max} was associated with variation in temperature.

Environmental and physiological regulation of interannual variation in NEE

Week-to-week change in NEE was associated primarily with change in canopy photosynthetic capacity rather than with variation in apparent light-use efficiency or in the basal respiration rate. The strong correlation between NEE and A_{max} may partly be a consequence of the temporal scale at which data were analyzed. Photosynthesis should respond quickly to changes in Rn and evaporative deficit. By contrast, respiration rates are sensitive to factors like soil water content and the availability of C substrates that may change more slowly or exert effects that are lagged in time (Davidson *et al.*, 2006). Ultimately, however, photosynthetic capacity may affect both respiration and apparent light-use

Published 2009 This article is a US Government work and is in the public domain in the USA, *Global Change Biology*, **16**, 990–1002

Source	df	NEE	A _{max}	α ($\times 10^{-3}$)	R_{10}
Las Cruces					
RH	1	236.3** (+)	-	6.0** (-)	49.4** (+)
WS	1	106.4+ (+)	_	1.5 (-)	0.9 (-)
$RH \times Year$	5	641.4**	_	15.0**	21.5**
$WS \times Year$	5	302.0+	-	36.3**	20.5**
Error	136	4372.9		98.9	94.6
Total	148	5659.0		158.0	186.9
Lucky Hills					
WS	1	130.0** (+)	1020.3** (-)	_	4.7** (+)
ppt5	- 1	66.8** (-)	$1574.7^{**}(+)$	_	$12.4^{**}(+)$
WS × Year	5	264 4**	714 8**	_	22.6**
nnt5 × Year	5	126.6**	177 4**	_	
Frror	276	1927.9	1881 7		31 7
Total	270	2510.7	5268 0		71 /
Iotal Van dell	200	2510.7	5508.9		/1.4
MC	1	E2E 4** (+)	1045 5** ()	1 (** ()	1.4(+)
WS	1	$535.4^{**}(+)$	$1945.5^{44}(+)$	1.6^{-1} (-)	1.4(+)
Deficit	1	$2/5.4^{44}$ (+)	$964.3^{m}(+)$	$34.8^{44} (+)$	9.4**(-)
ppt/	1	249.0** (-)	3/04.4** (+)	4.7** (+)	$11.6^{**}(+)$
$WS \times Year$	7	803.1**	1468.1**	42.4	25.0**
Deficit \times Year	7	253.7**	863.3**	31.0**	-
ppt7 $ imes$ Year	7	656.6**	1626.1**	-	5.8
Error	296	2615.6	5207.5	230	31.7
Total	320	5388.8	15779.3	340	85.0
Burns					
AT	1	57.6** (+)	311.2** (-)	0.4^+ (+)	10.9** (+)
Deficit	1	254.4** (+)	296.9** (-)	0.4^+ (+)	2.2** (-)
PET	1	91.3** (-)	127.9** (+)	3.4** (-)	7.8** (+)
$AT \times Year$	6	343.1**	104.6**	5.9**	9.6**
Deficit × Year	6	36.3*	12.7	1.7^{+}	1.3*
$PET \times Year$	6	94.0**	33.6*	5.0**	5.4**
Error	108	309.1	273.8	11.2	10.6
Total	129	1185.8	1160.6	28.0	47.7
Nunn					
AT	1	$125.4^{**}(+)$	205.1** (-)	14.6** (+)	2.0** (-)
Rn	1	825.9** (-)	1032.1** (+)	_	$4.8^{*}(+)$
$AT \times Year$	4	135.2*	1092.3**	15.1**	23.7**
$Rn \times Year$	4	111 1+	431 4**	_	
Error	97	1320.9	1939.4	33.0	82 7
Total	107	2518 5	4700 3	62.0	113.2
Dubois	107	2010.0	1,00.0	02.0	110.2
WS	1	340 7** (_)	77(+)	1 0** (+)	2 14** (_)
Rn	1	22 00 7** ()	986 6** (+)	20.0**(+)	2.14 ()
nnt5	1	2200.7 (-)	900.0 (+) 827 5** (+)	20.0 (+)	ー 42 57**(_土)
WE X Voor	1	90.7 (-) 1401 5**	259.4**	- 20 0**	42.37 (+)
W5 × Tear	7	1421.3	102.0+	20.0 5.0 ⁺	11.00
$Kn \times Year$	/	366.1	102.0	5.0	- 2 70 ⁺
$ppt5 \times 1ear$	1(0	289.2**	224./**	-	2.70
Error	168	1827.2	1195.6	67.0	32.97
lotal	192	6536.1	3732.4	123.0	91.97
Mandan	-				
SI	1	676.3** (-)	2196.0** (+)	5.7** (-)	4.8** (+)
Rn	1	225.7** (-)	-	1.4** (+)	-
ppt5	1	86.9**(-)	-	-	_

Table 3 Sums of squares (SS) associated with effects of environmental variation on net ecosystem CO₂ exchange (NEE; $gm^{-2}day^{-1}$), A_{max} (µmol m⁻² s⁻¹), α (mol CO₂ mol⁻¹ photons), and R_{10} (µmol m⁻² s⁻¹) for each of eight rangeland ecosystems

Published 2009

This article is a US Government work and is in the public domain in the USA, Global Change Biology, 16, 990–1002

1000 H. W. POLLEY *et al.*

Table 3. (Contd.)

Source	df	NEE	A_{\max}	α ($ imes 10^{-3}$)	R_{10}
$Rn \times Year$	6	266.3**	_	2.0**	_
Error	165	1487.6	3343.2	14.9	23.4
Total	180	3048.0	6604.6	25.0	48.6
Woodward					
Rn	1	2614.6** (-)	2806.1** (+)	21.0** (+)	12.73** (+)
ppt1	1	675.3** (+)	1302.6** (+)	_	43.62** (+)
$Rn \times Year$	10	1579.1**	2606.4**	12.6**	30.30**
Error	320	5080.2	18336.2	54.8	267.77
Total	332	9949.2	25 051.3	88.5	344.42

NEE and its component processes were analyzed using a separate-slopes regression model. Shown are the degrees of freedom (df) for the model for NEE. Signs (+, –) of relationships between weekly values of NEE, A_{max} , α , and R_{10} and environmental variables for each rangeland are shown in parentheses. Environmental variables include air and soil temperature (AT, ST), evaporative deficit (deficit), net radiation (Rn), potential evapotranspiration (PET), relative humidity (RH), wind speed (WS), and various indices of time-lagged precipitation (e.g., ppt5; mean of precipitation per week over the 5 weeks preceding flux measurements).

**P < 0.01, *P < 0.05, +P < 0.10. The r^2 for a single-slopes regression model for each rangeland may be calculated by dividing the SS associated with the main effects of environmental variables by the total SS. The proportion of the variance in each flux component explained by functional change is calculated by dividing the SS associated with environment × year interaction terms by the total SS.

efficiency. Soil and ecosystem-level respiration rates are often highly correlated with rates of CO₂ uptake (Polley *et al.*, 2006), for example. For many of the rangelands we studied, A_{max} , α , and R_{10} all were positively correlated with Rn and precipitation.

Functional change

Functional change in NEE was associated with functional change in one or more of the physiological components of CO₂ flux on most rangelands. NEE-environment relationships thus differed among years partly because $A_{\rm max}$, α , or R_{10} responded differently to environmental drivers among years. For most rangelands, functional change in NEE resulted from among-year variation in the response of photosynthetic parameters, A_{max} and α , to environmental drivers. Temporal variability in NEE was controlled mainly by variability in GPP in a boreal and two temperate pine forest (Luyssaert et al., 2007) and by seasonal fluctuations in daytime net CO₂ uptake in a Mojave Desert shrubland (Jasoni et al., 2005). By contrast, variability in NEE was explained by fluctuations in ecosystem respiration in European forests (Valentini et al., 2000) and was stabilized by offsetting variation in GPP and respiration in a spruce-dominated forest (Richardson et al., 2007).

The physiological component that best explained functional change in NEE was not necessarily the component that best explained variation in weekly values of NEE. Week-to-week change in A_{max} accounted for most of variation in weekly values of NEE on six of the eight rangelands, but among-year differences in

A_{max}-environment relationships explained functional change in NEE only on desert rangelands at Kendall and Lucky Hills. Functional change in NEE was better predicted by year-to-year differences in the response of α to the environment, by among-year variation in maximum values of LAI, or by the combination of differences in α -environment slopes and LAI_{max} than by variation in A_{max}-environment relationships for sagebrush steppe at Dubois and the three Great Plains grasslands. Importantly, these four ecosystems are also those for which NEE correlated strongly with Rn rather than with precipitation or water-related parameters alone. Net CO₂ uptake on sagebrush steppe at Dubois and Great Plains grasslands was apparently regulated by the availability of light (Rn) and efficiency with which light was used in CO₂ capture during a least portion of most growing seasons.

Apparent light-use efficiency, measured as the rate of increase in GPP per unit of increase in PPFD, will be relatively small when little light is absorbed by the plant canopy, as when LAI is reduced, or when GPP per unit of absorbed light is small, as when photosynthesis is constrained. Drought (Nouvellon *et al.*, 2000) or excessive evaporative demand and low N availability (Turner *et al.*, 2003) all may reduce α and alter α -environment response functions either by reducing CO₂ fixation directly or by limiting canopy development.

Rangeland CO₂ fluxes are very sensitive to changes in canopy development (Sims & Bradford, 2001; Flanagan *et al.*, 2002; Li *et al.*, 2005; Phillips & Beeri, 2008; Polley *et al.*, 2008) and to factors like precipitation that affect biomass and LAI (Knapp & Smith, 2001; Flanagan *et al.*,

Table 4 Results of regression analyses relating net ecosystem exchange of CO₂ (NEE; $g m^{-2} da y^{-1}$) calculated for each growing season using a separate-slopes regression model (effect of functional change) to maximum values of LAI (LAI_{max}) each season and to values of A_{max} (µmol $m^{-2} s^{-1}$), α (mol CO₂ mol⁻¹ photons), and R_{10} (µmol $m^{-2} s^{-1}$) calculated for each season using separate-slopes models developed independently for each physiological parameter (independent variables)

Location	Independent variables	Intercept	Slope	r^2	<i>P</i> -value
Lucky Hills	A _{max}	3.68	-0.48	0.66	0.05
Kendall	A _{max}	2.32	-0.46	0.47	0.04
Burns	R_{10}	-1.51	3.60	0.90	0.0007
Dubois	α	3.68	-249.81	0.81	0.002
	A_{\max}	5.66	-1.54	0.80	0.002
Mandan	α	$-7.0 imes 10^5$	3.26	0.61	0.024
	R_{10}	-0.80	3.27	0.60	0.025
	R_{10}/LAI_{max}	5.54	-4.04/-5.16	0.84	0.012
Nunn	LAI _{max}	-0.61	-6.23	0.63	0.07
Woodward	α	-4.74	-190.76	0.29	0.05
	α/LAI_{max}	2.46	-182.27/-5.61	0.82	0.001

Shown are significant correlations with the greatest r^2 values for each rangeland. A single value of NEE, A_{max} , α , and R_{10} was calculated for each season at each location (n = 5–11 seasons) using the multiyear average of each environmental variable included in the separate-slopes model for each flux. NEE for Mandan was fit to α and R_{10} values with a power function. Other relationships were fit with simple linear or multiple regression analysis.

2002; Knapp et al., 2002). Functional change in NEE thus may have resulted partly because changes in leaf area influenced the response of α or other components of CO2 flux to environmental drivers. On northern mixedgrass prairie, for example, net CO₂ uptake increased more per unit increase in ST when LAI peaked late rather than early in the season (Polley et al., 2008). Not surprisingly, we found that weekly values of net CO₂ uptake correlated positively with LAI for each of the three grasslands for which we have repeated measurements of leaf area (Nunn, Mandan, Woodward). Yearto-year differences in the maximum value of LAI also provided the best single explanation for functional change in NEE at Nunn and were correlated with functional change at Mandan and Woodward. For mixed-grass prairies at Mandan and Woodward, however, functional change in NEE was explained partly by among-year differences in the response of α to environmental drivers that was not correlated with differences in LAI_{max}.

Functional change complicates climate-based predictions of CO₂ exchange and requires that we account for changes in the biological functioning of ecosystems in order to predict ecosystem C balance. Functional change in NEE of most rangelands resulted from change in the response of photosynthetic parameters to environmental drivers. The question of why environmental effects on A_{max} and α differed among years remains to be determined. Differences were not explained by change in LAI alone. Canopy photosynthetic capacity has been shown to track seasonal changes in the N content of grassland vegetation (Flanagan *et al.*, 2002), indicating that year-to-year differences in the N concentration of vegetation could account for change in responses of A_{max} or α to temperature, Rn, and other environmental variables. Indeed, among-year variation in the C:N ratio of aboveground biomass partially explained interannual variation in NEE on the Northern Great Plains of the United States (Phillips & Beeri, 2008). But, canopy characteristics like live biomass and C:N ratio together explained relatively little of variability in grassland NEE. Phillips & Beeri (2008) used multiple regression analysis to model variability in growing season values of NEE as a function of canopy characteristics, annual precipitation, and year. Most of the variability in NEE was attributed to year. Clearly, a better understanding of environmental and other controls on CO₂ exchange will be required to accurately predict among-year variation in NEE of rangeland ecosystems.

Acknowledgements

Patricia Mielnick and Bill Dugas screened and compiled data. Stuart Hardegree and Howard Skinner provided insightful reviews.

References

- Angell R, Svejcar T, Bates J, Saliendra NZ, Johnson DA (2001) Bowen ratio and closed chamber carbon dioxide flux measurements over sagebrush steppe vegetation. *Agricultural and Forest Meteorology*, **108**, 153–161.
- Baldocchi D, Falge E, Gu L *et al*. (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale

carbon dioxide, water vapor, and energy flux densities. *Bulletin of the American Meteorological Society*, **82**, 2415–2434.

- Barford CC, Wofsy SC, Goulden ML *et al.* (2001) Factors controlling long- and short-term sequestration of atmospheric CO₂ in a mid-latitude forest. *Science*, **294**, 1688–1691.
- Davidson EA, Janssens IA, Luo Y (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q₁₀. *Global Change Biology*, **12**, 154–164.
- Dugas WA (1993) Micrometeorological and chamber measurements of CO₂ flux from bare soil. Agricultural and Forest Meteorology, 67, 115–128.
- Dugas WA, Evans R, Hollinger D (2001) Eddy correlation and Bowen ratio/energy balance measurements of sensible heat, latent heat, and CO₂ flux over a tallgrass prairie. BRC Report # 01-3, Blackland Research Center, Temple, TX.
- Dugas WA, Heuer ML, Mayeux HS (1999) Carbon dioxide fluxes over Bermuda grass, native prairie, and sorghum. *Agricultural* and Forest Meteorology, 93, 121–139.
- Flanagan LB, Wever LA, Carlson PJ (2002) Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. *Global Change Biology*, 8, 599–615.
- Frank AB, Sims PL, Bradford JA, Mielnick PC, Dugas WA, Mayeux HS (2000) Carbon dioxide fluxes over three Great Plains Grasslands. In: *The Potential of US Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect* (eds Follett RF, Kimble JM, Lal R), pp. 167–188. CRC Press, Boca Raton, FL, USA.
- Friend AD, Arneth A, Kiang NY *et al.* (2007) FLUXNET and modelling the global carbon cycle. *Global Change Biology*, **13**, 610–633.
- Hollinger DY, Goltz SM, Davidson EA, Lee JT, Tu K, Valentine HT (1999) Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest. *Global Change Biology*, **5**, 891–902.
- Hui D, Luo Y, Katul G (2003) Parititioning interannual variability in net ecosystem exchange between climatic variability and functional change. *Tree Physiology*, **23**, 433–442.
- Jasoni RL, Smith SD, Arnone JA III (2005) Net ecosystem CO₂ exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO₂. *Global Change Biology*, **11**, 749–756.
- Knapp AK, Fay PA, Blair JM et al. (2002) Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202–2205.
- Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary production. *Science*, 291, 481–484.
- Li S-G, Asanuma J, Eugster W *et al.* (2005) Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. *Global Change Biology*, **11**, 1941–1955.
- Luyssaert S, Janssens IA, Sulkava M *et al.* (2007) Photosynthesis drives anomalies in net carbon-exchange of pine forests at different latitudes. *Global Change Biology*, **13**, 2110–2127.

- Nouvellon Y, Seen DL, Rambal S *et al.* (2000) Time course of radiation use efficiency in a shortgrass ecosystem: consequences for remotely sensed estimation of primary production. *Remote Sensing of Environment*, **71**, 43–55.
- Phillips RL, Beeri O (2008) Scaling-up knowledge of growingseason net ecosystem exchange for long-term assessment of North Dakota grasslands under the Conservation Reserve Program. *Global Change Biology*, 14, 1008–1017.
- Polley HW, Frank AB, Sanabria J, Phillips RL (2008) Interannual variability in carbon dioxide fluxes and flux-climate relationships on grazed and ungrazed northern mixed-grass prairie. *Global Change Biology*, **14**, 1620–1632.
- Polley HW, Mielnick PC, Dugas WA, Johnson HB, Sanabria J (2006) Increasing CO₂ from subambient to elevated concentrations increases grassland respiration per unit of net carbon fixation. *Global Change Biology*, **12**, 1390–1399.
- Reichstein M, Falge E, Baldocchi D *et al.* (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. *Global Change Biology*, **11**, 1424–1439.
- Richardson AD, Hollinger DY, Aber JD, Ollinger SV, Braswell BH (2007) Environmental variation is directly responsible for short- but not long-term variation in forest–atmosphere carbon exchange. *Global Change Biology*, **13**, 788–803.
- Sims PL, Bradford JA (2001) Carbon dioxide fluxes in a southern plains prairie. Agricultural and Forest Meteorology, 109, 117–134.
- Stephenson NL (1990) Climatic control of vegetation distribution: the role of the water balance. *American Naturalist*, 135, 649–670.
- Svejcar T, Angell R, Bradford J et al. (2008) Carbon fluxes on North American rangelands. Rangeland Ecology and Management, 61, 465–474.
- Syed KH, Flanagen LB, Carlson PJ, Glenn AJ, van Gaalen KE (2006) Environmental control of net ecosystem CO₂ exchange in a treed, moderately rich fen in northern Alberta. *Agricultural and Forest Meteorology*, **140**, 97–114.
- Turner DP, Urbanski S, Bremer D, Wofsy SC, Meyers T, Gower ST, Gregory M (2003) A cross-biome comparison of daily light use efficiency for gross primary production. *Global Change Biology*, 9, 383–395.
- Valentini R, Matteucci G, Dolman AJ et al. (2000) Respiration as the main determinant of carbon balance in European forests. *Nature*, 404, 861–865.
- Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapor transfer. *Quarterly Journal of the Royal Meteorological Society*, **106**, 85–100.
- Wolf A, Saliendra N, Akshalov K, Johnson DA, Laca E (2008) Effects of different eddy covariance correction schemes on energy balance closure and comparisons with the modified Bowen ratio system. *Agricultural and Forest Meteorology*, **148**, 942–952.